
A UML Profile for Enterprise Distributed Object
Computing

Joint Final Submission

Component Collaboration Architecture (CCA)

Version 1.0b

Component Collaboration Architecture (CCA)

Submitted by:

CBOP
Data Access Technologies
DSTC
EDS
Fujitsu
IBM
Iona Technologies
Open-IT
Sun Microsystems
Unisys

Supported by:

Hitachi
SINTEF
NetAccount

Extracted From
OMG Document Number: ad/2001-08-19

The Component Collaboration Architecture (CCA) forms the architectural and

modeling foundation for EDOC. CCA provides the base modeling concepts that are
required to support enterprise collaboration using a variety of implementation and
middleware technologies. As such it may be used independently of other parts of

EDOC. This document is intended to provide the CCA subset of EDOC but is not a
formal standards document.

ad/2001-08-19 – UML for EDOC Part I

ii A UML Profile for Enterprise Distributed Object Computing February 6, 2002

©Copyright 2001, CBOP, Data Access Technologies, DSTC, EDS, Fujitsu, IBM, Iona Technologies, Open-IT, Sun
Microsystems, Unisys.

CBOP, Data Access Technologies, DSTC, EDS, Fujitsu, IBM, Iona Technologies, Open-IT, Sun Microsystems, Unisys
hereby grant to the Object Management Group, Inc. a nonexclusive, royalty-free, paid up, worldwide license to copy
and distribute this document and to modify this document and distribute copies of the modified version.

Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in
the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

NOTICE

The information contained in this document is subject to change without notice.

The material in this document details an Object Management Group specification in accordance with the license and
notices set forth on this page. This document does not represent a commitment to implement any portion of this
specification in any companies' products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP, CBOP, DATA ACCESS TECHNOLOGIES, DSTC, EDS, FUJITSU, IBM, IONA
TECHNOLOGIES, OPEN-IT, SUN MICROSYSTEMS AND UNISYS MAKE NO WARRANTY OF ANY KIND
WITH REGARDS TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. The aforementioned copyright holders
shall not be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.
This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered
by copyright herein may be reproduced or used in any form or by any means—graphic, electronic or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems—without permission of the
copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth
in subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013.

OMG and Object Management are registered trademarks of the Object Management Group, Inc. Object Request
Broker, OMG IDL, ORB CORBA, CORBAfacilities, and CORBAservices are trademarks of the Object Management
Group.

The UML logo is a trademark of Rational Software Corp.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by sending email to issues@omg.org.
Please reference precise page and section numbers, and state the specification name, version number, and revision date
as they appear on the front page, along with a brief description of the problem. You will not receive any reply, but your
report will be referred to the OMG Revision Task Force responsible for the maintenance of the specification. If you
wish to be consulted or informed during the resolution of the submitted issue, indicate this in your email. Please note
that issues appear eventually in the issues database, which is publicly accessible.

ad/2001-08-19 – UML for EDOC Part I

February 6, 2002 A UML Profile for Enterprise Distributed Object Computing iii

Contents

1. The Component Collaboration Architecture... 7
1.1 Rationale .. 7

1.1.1 Problems to be solved... 7
1.1.2 Levels of ProcessComponent in a Computational Specification .. 10
1.1.3 Approach .. 12
1.1.4 Concepts ... 13
1.1.5 Conceptual Framework... 15

1.2 CCA Metamodel .. 18
1.2.1 Structural Specification .. 18
1.2.2 Choreography ... 37
1.2.3 Composition.. 48
1.2.4 Document Model .. 59
1.2.5 Model Management .. 70

1.3 CCA Notation... 73
1.3.1 CCA Specification Notation ... 74
1.3.2 Composite Component Notation .. 75
1.3.3 Community Process Notation ... 76

1.4 UML Profile ... 77
1.4.1 Tables mapping concepts to profile elements ... 77
1.4.2 Introduction .. 80
1.4.3 Stereotypes for Structural Specification ... 82
1.4.4 Stereotypes for Choreography .. 98
1.4.5 Stereotypes for Composition .. 106
1.4.6 DocumentModel «profile» Package ... 113
1.4.7 UML Model_Management Package ... 117
1.4.8 Relationships .. 119
1.4.9 General OCL Definition Constraints ... 139

1.5 Diagramming CCA .. 140
1.5.1 Types of Diagram ... 140
1.5.2 The Buy/Sell Example .. 140
1.5.3 Collaboration diagram shows community process ... 141
1.5.4 Class diagram for protocol structure... 142
1.5.5 Activity Diagram (Choreography) for a Protocol... 144
1.5.6 Class Diagram for Component Structure.. 145
1.5.7 Class Diagram for Interface.. 147
1.5.8 Class Diagram for Process Components with multiple ports ... 149
1.5.9 Activity Diagram showing the Choreography of a Process Component 150
1.5.10 Collaboration Diagram for Process Component Composition ... 150
1.5.11 Model Management .. 153
1.5.12 Using the CCA Notation for Component & Protocol Structure ... 154

2. The CCA Sales example ... 156
2.1 BuySell Community Process.. 156
2.2 Protocols... 157

2.2.1 Sales Protocol ... 157
2.2.2 QuoteBT Protocol... 159
2.2.3 OrderBT Protocol ... 159
2.2.4 ShippingNoticeBT Protocol.. 160
2.2.5 PaymentNoticeBT Protocol .. 161

UML for EDOC - CCA

2.2.6 ShipBT Protocol ... 161
2.2.7 DeliveryBT Protocol... 161

2.3 Components.. 162
2.3.1 Buyer ProcessComponent... 162
2.3.2 Seller ProcessComponent ... 163
2.3.3 Seller ProcessComponent – internal composition .. 165
2.3.4 QuoteCalculator ProcessComponent .. 166
2.3.5 Seller_Orders ProcessComponent .. 166
2.3.6 Warehouse ProcessComponent... 167
2.3.7 AccountsReceivable ProcessComponent... 167
2.3.8 Logistics ProcessComponent .. 168

iv A UML Profile for Enterprise Distributed Object Computing February 6, 2002

UML for EDOC - CCA

Figures

Figure 1: ProcessComponent Composition at multiple levels ... 12
Figure 2: Structure and dependencies of the CCA Metamodel ... 15
Figure 3: CCA Major elements ... 18
Figure 4: Structural Specification Metamodel... 19
Figure 5: Choreography Metamodel.. 37
Figure 6: Composition metamodel .. 49
Figure 7: Document Metamodel.. 60
Figure 8: Model Management Metamodel .. 70
Figure 9: ProcessComponent specification notation ... 74
Figure 10: ProcessComponent specification notation (expanded ProtocolPorts).. 74
Figure 11: Composite Component notation (without internal ComponentUsages)... 75
Figure 12: Composite Component notation... 76
Figure 13: CommunityProcess notation .. 77
Figure 14: UML«metamodel» and CCA «profile»Packages.. 80
Figure 15: Stereotypes in the UML Profile for CCA .. 81
Figure 16: Stereotypes for Structural Specification... 82
Figure 17: Stereotypes for Choreography ... 98
Figure 18: Stereotypes for Composition.. 106
Figure 19: Stereotypes for DocumentModel ... 113
Figure 20: Top Level Collaboration Diagram ... 141
Figure 21: Class diagram for protocol structure .. 142
Figure 22: Choreography of a Protocol ... 144
Figure 23: Class Diagram for Component Structure ... 146
Figure 24: Class Diagram for Interface ... 148
Figure 25: Using Interfaces ... 148
Figure 26: Process Components with multiple ports ... 149
Figure 27: Choreography of a Process Component... 150
Figure 28: Process Component Composition .. 151
Figure 29: Model Management ... 154
Figure 30: Community Process and Protocol .. 155
Figure 31 Composition in CCA notation... 155
Figure 32 BuySell CommunityProcess.. 157
Figure 33 Sales Protocol structure and choreography ... 158
Figure 34 QuoteBT Protocol structure and choreography... 159
Figure 35 OrderBT Protocol structure and choreography ... 160
Figure 36 ShippingNoticeBT Protocol structure and choreography ... 160
Figure 37 PaymentNoticeBT Protocol structure and choreography.. 161
Figure 38 ShipBT Protoco structure and choreography l .. 161
Figure 39 DeliveryBT Protocol structure and choreography .. 162
Figure 40 Buyer ProcessComponent structure and choreography .. 162
Figure 41 Seller ProcessComponent structure and choreography.. 163
Figure 42 Seller ProcessComponent : internal composition.. 165
Figure 43 Seller_Orders ProcessComponent structure and choreography ... 166
Figure 44 Warehouse ProcessComponent structure and choreography ... 167
Figure 45 AccountsReceivable ProcessComponent structure and choreography... 167
Figure 46 Logistics ProcessComponent structure and choreography.. 168

February 6, 2002 A UML Profile for Enterprise Distributed Object Computing v

UML for EDOC - CCA

Tables

Table 1: Stereotypes for Structural Specification (UML notation: Class Diagram).. 78
Table 2: TaggedValues for Structural Specification.. 78
Table 3: Stereotypes for Choreography (UML notation: Statechart Diagram) ... 79
Table 4: TaggedValues for Choreography .. 79
Table 5: Stereotypes for Composition (UML notation: Collaboration Diagram at specification level)................ 79
Table 6: TaggedValues for Composition... 79
Table 7: Stereotypes for DocumentModel (UML notation: Class Diagram).. 79
Table 8: TaggedValues for DocumentModel .. 80
Table 9: Summary of stereotypes for a Community Process... 142
Table 10: Summary of stereotypes for a Protocol ... 143
Table 11: Summary of tagged values for a Protocol ... 144
Table 12: Stereotypes for an Activity Diagram or Choreography... 145
Table 13: Tagged Values for a Choreography... 145
Table 14: Stereotypes for a Process Component Class Diagram... 147
Table 15: tagged values for a Process Component Class Diagram ... 147
Table 16: Elements of an Interface.. 148
Table 17: Connections ... 152
Table 18: Stereotypes for a Process Component Collaboration .. 152
Table 19 Glossary of Terms .. 169

vi A UML Profile for Enterprise Distributed Object Computing February 6, 2002

UML for EDOC - CCA

1. The Component Collaboration Architecture

The Component Collaboration Architecture (CCA) details how the UML concepts of
classes, collaborations and activity graphs can be used to model, at varying and mixed
levels of granularity, the structure and behavior of the components that comprise a
system.

1.1 Rationale

1.1.1 Problems to be solved

The information system has become the backbone of the modern enterprise. Within the
enterprise, business processes are instrumented with applications, workflow systems,
web portals and productivity tools that are necessary for the business to function.

While the enterprise has become more dependent on the information system the rate of
change in business has increased, making it imperative that the information system
keeps pace with and facilitates the changing needs of the enterprise.

Enterprise information systems are, by their very nature, large and complex. Many of
these systems have evolved over years in such a way that they are not well understood,
do not integrate and are fragile. The result is that the business may become dependent
on an information infrastructure that cannot evolve at the pace required to support
business goals.

The way in which to design, build, integrate and maintain information systems that are
flexible, reusable, resilient and scalable is now becoming well understood but not well
supported. The CCA is one of a number of the elements required to address these needs
by supporting a scalable and resilient architecture.

The following subsections detail some of the specific problems addressed by CCA.

1.1.1.1 Recursive decomposition and assembly

Information systems are, by their very nature, complex. The only viable way to manage
and isolate this complexity is to decompose these systems into simpler parts that work
together in well-defined ways and may evolve independently over time. These parts
can than be separately managed and understood. We must also avoid re-inventing parts
that have already been produced, by reusing knowledge and functionality whenever
practical.

The requirements to decompose and reuse are two aspects of the same problem. A
complex system may be decomposed “top down”, revealing the underlying parts.
However, systems will also be assembled from existing or bought-in parts – building up
from parts to larger systems.

Virtually every project involves both top-down decomposition in specification and
“bottom up” assembly of existing parts. Bringing together top-down specification and

February 6, 2002 UML for EDOC - CCA 7

UML for EDOC - CCA

bottom-up assembly is the challenge of information system engineering.

This pattern of combining decomposition in specification and assembly of parts in
implementation is repeated at many levels. The composition of parts at one level is the
part at the next level up. In today’s web-integrated world this pattern repeats up to the
global information system that is the Internet and extends down into the technology
components that make up a system infrastructure – such as operating systems,
communications, DBMS systems and desktop tools.

Having a rigorous and consistent way to understand and deal with this hierarchy of
parts and compositions, how they work and interact at each level and how one level
relates to the next, is absolutely necessary for achieve the business goals of a flexible
and scalable information systems.

1.1.1.2 Traceability

The development process not only extends “up and down” as described above, but also
evolves over time and at different levels of abstraction. The artifacts of the
development process at the beginning of a project may be general and “fuzzy”
requirements that, as the project progresses, become precisely defined either in terms of
formal requirements or the parts of the resulting system. Requirements at various stages
of the project result in designs, implementations and running systems (at least when
everything goes well!). Since parts evolve over time at multiple levels and at differing
rates it can become almost impossible to keep track of what happened and why.

Old approaches to this problem required locking-down each level of the process in a
“waterfall”. Such approaches would work in environments where everything is known,
well understood and stable. Unfortunately such environments seldom, if ever, occur in
reality. In most cases the system becomes understood as it evolves, the technology
changes, and new business requirements are introduced for good and valid reasons.
Change is reality.

Dealing with this dynamic environment while maintaining control requires that the parts
of the system and the artifacts of the development process be traceable both in terms of
cause-effect and of changes over time. Moreover, this traceability must take into
account the fact that changes happen at different rates with different parts of the system,
further complicating the relationships among them. The tools and techniques of the
development process must maintain and support this traceability.

1.1.1.3 Automating the development process

In the early days of any complex and specialized new technology, there are “gurus” able
to cope with it. However, as a technology progresses the ways to use it for common
needs becomes better understood and better supported. Eventually those things that
required the gurus can be done by “normal people” or at least as part of repeatable
“factory” processes. As the technology progresses, the gurus are needed to solve new
and harder problems – but not those already solved.

Software technology is undergoing this evolution. The initial advances in automated
software production came from compilers and languages, leading to DBMS systems,
spreadsheets, word processors, workflow systems and a host of other tools. The end-
user today is able to accomplish some things that would have challenged the gurus of 30
years ago.

8 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

This evolution in automation has not gone far enough. It is still common to re-invent
infrastructures, techniques and capabilities every time a new application is produced.
This is not only expensive, it makes the resulting solutions very specialized, and hard to
integrate and evolve.

Automation depends on the ability to abstract away from common features, services,
patterns and technology bindings so that application developers can focus on
application problems. In this way the ability to automate is coupled with the ability to
define abstract viewpoints of a system – some of which may be constant across the
entire system.

The challenge today is to take the advances in high-level modeling, design and
specification and use them to produce factory-like automation of enterprise systems.
We can use techniques that have been successful in the past, both in software and other
disciplines to automate the steps of going from design to deployment of enterprise scale
systems. Automating the development process at this level will embrace two central
concepts; reusable parts, and model-based development. It will allow tools to apply pre-
established implementation patterns to known modeling patterns. CCA defines one
such modeling pattern.

1.1.1.4 Loose coupling

Systems that are constructed from parts and must survive over time, and survive reuse
in multiple environments, present some special requirements. The way in which the
parts interact must be precisely understood so that they can work together, yet they must
also be loosely coupled so that each may evolve independently. These seemingly
contradictory goals depend on being able to describe what is important about how parts
interact while specifically not coupling that description to things that will change or
how the parts carry out their responsibility.

Software parts interact within the context of some agreement or contract – there must be
some common basis for communication. The richer the basis of communication the
richer the potential for interaction and collaboration. The technology of interaction is
generally taken care of by communications and middleware while the semantics of
interaction are better described by UML and the CCA.

So while the contract for interaction is required, factors such as implementation,
location and technology should be separately specified. This allows the contract of
interaction to survive the inevitable changes in requirements, technologies and systems.

Loose coupling is necessarily achieved by the capability of the systems to provide “late
binding” of interactions to implementation.

1.1.1.5 Technology Independence

A factor in loose coupling is technology independence i.e. the ability to separate the
high-level design of a part or a composition of parts from the technology choices that
realize it. Since technology is so transient and variations so prevalent it is common for
the same “logical” part to use different technologies over time and interact with
different technologies at the same time. Thus a key ingredient is the separation high-
level design from the technology that implements it. This separation is also key to the
goal of automated development.

February 6, 2002 UML for EDOC - CCA 9

UML for EDOC - CCA

1.1.1.6 Enabling a business component Marketplace

The demand to rapidly deploy and evolve large-scale applications on the internet has
made brute force methods of producing applications a threat to the enterprise. Only by
being able to provision solutions quickly and integrate those solutions with existing
legacy applications can the enterprise hope to achieve new business initiatives in the
timeframe required to compete.

Component technologies have already been a success in desktop systems and user
interfaces. But this does not solve the enterprise problem. Recently the methods and
technologies for enterprise scale components have started to become available. These
include the “alphabet soup” of middleware such as XML, CORBA, Soap, Java, ebXml,
EJB & .net., What has not emerged is the way to bring these technologies together into
a coherent enterprise solution and component marketplace.

Our vision is one of a simple drag and drop environment for the assembly of
enterprise components that is integrated with and leverages a component
marketplace. This will make buying and using a software component as natural as
buying a battery for a flashlight.

1.1.1.7 Simplicity

A solution that encompasses all the other requirements but is too complex will not be
used. Thus our final requirement is one of simplicity. A CCA model must make sense
without too much theory or special knowledge, and must be tractable for those who
understand the domain, rather than the technology. It must support the construction of
simple tools and techniques that assist the developer by providing a simple yet powerful
paradigm. Simplicity needs to be defined in terms of the problem – how simply can the
paradigm so0lve my business problems. Simplistic infrastructure and tools that make it
hard to solve real problems are not viable.

1.1.2 Levels of ProcessComponent in a Computational
Specification

An EDOC-CCA computational specification can specify ProcessComponents at a
number of different levels. These levels correspond to four general categories of
ProcessComponent:

• E-Business Components

• Application Components

• Distributed Components

• Program Components

1.1.2.1 E-Business Components

E-Business Components are used as the integration point between enterprises,
enterprises and customers or somewhat independent parts of a large enterprise (such as
an acquired division). Interfaces to E-Business Components will frequently be directly
accessible on the Internet as part of a web portal.

The E-Business Component has the potential to spawn new forms of business and new
ways for business to work together.

10 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

E-Business Components integrate business entities that may share no common
computing management or infrastructure. Interactions between E-Business components
must be very loosely coupled and are always asynchronous. No assumptions of shared
resources may be made between the parties, and the internals of the E-Business
components will frequently be changed without informing other parties.

1.1.2.2 Application Components

Application Components represent new and legacy applications within an enterprise.
Application Components are used to integrate applications (EAI) and create new
applications, frequently to facilitate E-Business Components.

Application Components represent large-grain functional units. Each Application
Component may be implemented in different technologies for different parts of the
enterprise. Integrating Application Components facilitates enterprise-wide business
processes and efficiencies.

Individual Application Components may be individually managed, but the integration
falls under common management that may impose standards for interoperability and
security.

Application Components use a wide variety of integration techniques including
messaging, events, Internet exchanges and object or procedural RPC. Application
Components are frequently wrapped legacy systems.

1.1.2.3 Distributed Components

Distributed Components are functional parts of distributed applications. These
components are generally integrated within a common middleware infrastructure such
as EJB, CORBA Components or DCOM. Distributed components have well defined
interfaces and share common services and resources within an application.

Distributed Components provide for world-wide applications that can use a variety of
technologies. Most distributed component interactions are synchronous.

1.1.2.4 Program Components

Program Components act within a single process to facilitate a program or larger grain
component. Program Components may be technical in nature – such as a query
component, or business focused – such as a “customer” component. These components
will integrate under a common technology – such as J2EE.

Program Components provide the capability for drag-and-drop assembly of applications
from fine-grain parts.

Note that some Program Components will provide access to the “outside world”, such
as Corba or XML thus making a set of Program Components into a larger grain
component.

The destination between Program Components and all others is quite important as these
are the only components that do not use some kind of distributed technology – they are
only used and visible within the context of “a program”.

February 6, 2002 UML for EDOC - CCA 11

UML for EDOC - CCA

1.1.2.5 Relationships between ProcessComponent levels

Relationships between ProcessComponent levels

Figure 1 shows how configurations of ProcessComponents at one level may use and be
composed of ProcessComponents at lower levels. It also shows that at any level
ProcessComponents may be primitive, that is – directly implemented without being a
Composition. ProcessComponents may re-use and compose ProcessComponents at
lower levels or the same level.

E-business Components

Application Components

Distributed Components

Program Components

Figure 1: ProcessComponent Composition at multiple levels

There is no requirement or expectation that an EDOC computational specification must
use all of these levels. For example, an E-Business Component could be directly
composed of Program Components or it could use every levels

1.1.3 Approach

Our approach to these requirements is to utilize the Unified Modeling Language (UML)
as a basis for an architecture of recursive decomposition and assembly of parts. CCA
profiles three UML diagrams and adds one optional diagram.

1.1.3.1 Class Structure (Structure)

The class structure is used to show the structure of ProcessComponents and the
information which flows between them.

1.1.3.2 Statecharts (Choreography)

Statecharts are used to specify the dynamic (or temporal) contract of protocols and
components, when messages should be sent or received on various ports. The
Choreography specifies the intended external behavior of a component, either by
specifying transitions directly on its ports or indirectly via it’a protocols.

12 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

1.1.3.3 Collaborations (Composition)

Collaborations are used to show the composition of a ProcessComponent (or
community) by using a set of other ProcessComponents, configuring them and
connecting them together.

1.1.3.4 CCA Notation (Structure & Composition)

CCA Also defines a notation which integrates the ProcessComponent structure and
composition.

1.1.4 Concepts

At the outset it should be made clear that we are dealing with a logical concept of
component - “part”, something that can be incorporated in a logical composition. It is
referred to in the CCA as a ProcessComponent. In some cases ProcessComponents will
correspond and have a mapping to physical components and/or deployment units in a
particular technology.

Since CCA, by its very nature, may be applied at many levels, it is intended that CCA
be further specialized, using the same mechanisms, for specific purposes such as
Business-2-Business, e-commerce, enterprise application integration (EAI), distributed
objects, real-time etc.

It is specifically intended that different kinds and granularities of ProcessComponents at
different levels will be joined by the recursive nature of the CCA. Thus
ProcessComponents describing a worldwide B2B business process can decompose into
application level ProcessComponents integrated across the enterprise which can
decompose into program level ProcessComponents within a single system. However,
this capability for recursive decomposition is not always required. Any
ProcessComponent’s part may be implemented directly in the technology of choice
without requiring decomposition into other ProcessComponents.

The CCA describes how ProcessComponents at a given level of specification
collaborate and how they are decomposed at the next lower level of specification.
Since the specification requirements at these various levels are not exactly the same, the
CCA is further specialized with profiles for each level. For example,
ProcessComponents exposed on the Internet will require features of security and
distribution, while more local ProcessComponents will only require a way to
communicate.

The recursive decomposition of ProcessComponents utilizes two constructs in parallel:
composition (using UML Collaboration) to show what ProcessComponents must be
assembled and how they are put together to achieve the goal, and choreography (the
UML Statechart) to show the coordination of activities to achieve a goal. The CCA
integrates these concepts of “what” and “when” at each level.

Concepts from the Object Oriented Role Analysis Method (OORAM) and Real-time
Object Oriented Modeling (ROOM) have been adapted and incorporated into CCA.

1.1.4.1 What is a Component Anyway?

There are many kinds of components – software and otherwise. A component is simply
something capable of composing into a composition – or part of an assembly. There are

February 6, 2002 UML for EDOC - CCA 13

UML for EDOC - CCA

very different kinds of compositions and very different kinds of components. For every
kind of component there must be a corresponding kind of composition for it to assemble
into. Therefore any kind of component should be qualified as to the type of
composition. CCA does not claim to be “the” component model, it is “a” component
model with a corresponding composition model.

CCA ProcessComponents are processing components, ones that collaborate with other
CCA ProcessComponents within a CCA composition. CCA ProcessComponents can
be used to build other CCA ProcessComponents or to implement roles in a process –
such as a vendor in a buy-sell process. The CCA concepts of component and
composition are interdependent.

There are other forms of software and design components, including UML components,
EJBs, COM components, CORBA components, etc. CCA ProcessComponents and
composition are orthogonal to these concepts. A technology component, such as an
EJB may be the implementation platform for a CCA ProcessComponent.

Some forms of components and compositions allow components to be built from other
components, this is a recursive component architecture. CCA is such a recursive
component architecture.

1.1.4.2 ProcessComponent Libraries

While the CCA describes the mechanisms of composition it does not provide a
complete ProcessComponent library. ProcessComponent libraries may be defined and
extended for various domains. A ProcessComponent library is essential for CCA to
become useful without having to re-invent basic concepts.

1.1.4.3 Execution & Technology profiles

The CCA does not, in itself, specify sufficient detail to provide an executable system.
However, it is a specific goal of CCA that when a CCA specification is combined with
a specific infrastructure, executable primitive ProcessComponents and a technology
profile, it will be executable.

A technology profile describes how the CCA or a specialization of CCA can be realized
by a given technology set. For example, a technology profile for Java may enable Java
components to be composed and execute using dynamic execution and/or code
generation. A technology profile for CORBA may describe how CORBA components
can be composed to create new CORBA components and systems. In RM-ODP terms,
the technology profile represents the engineering and technology specifications.

Some technology profiles may require additional information in the specification to
execute as desired; this is generally done using tagged values in the specification and
options in the mapping. The way in which technology specific choices are combined
with a CCA specification is outside of the scope of the CCA, but within the scope of the
technology profile. For example, a Java mapping may provide a way to specify the
signatures of methods required for Java to implement a component.

The combination of the CCA with a technology profile provides for the automated
development of executable systems from high-level specifications.

For details of possible (non-normative)mappings from the CCA Profile to various
engineering and technology options, see Part II of this submission.

14 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

1.1.4.4 Specification Vs. Methodology

The CCA provides a way to specify a system in terms of a hierarchical structure of
Communities of ProcessComponents and Entities that, when combined with
specifications prepared using technology profiles, is sufficiently complete to execute.
Thus the CCA specification is the end-result of the analysis and design process. The
CCA does not specify the method by which this specification is achieved. Different
situations may require different methods. For example; a project involving the
integration of existing legacy systems will require a different method than one
involving the creation of a new real-time system – but both may share certain kinds of
specification.

1.1.4.5 Notation

The CCA defines some new notations to simplify the presentation of designs for the
user. These new notations are optional in that standard UML notation may be used
when such is preferred or CCA specific tooling is not available. The CCA notation can
be used to achieve greater simplicity and economy of expression.

1.1.5 Conceptual Framework

Document Model
(from CcaProfile)

Component Specification
(from CcaProfile)

Composition
(from CcaProfile)

Model
Management

(from CcaProfile)

Choreography
(from CcaProfile)

Figure 2: Structure and dependencies of the CCA Metamodel

1.1.5.1 ProcessComponent Specification

In keeping with the concept of encapsulation, the external “contract” of a CCA
component is separate from how that component is realized. The contract specifies the
“outside” of the component. Inside of a component is its realization – how it satisfies
its contract. The outside of the component is the component specification. A
component with only a specification is abstract; it is just the “outside” with no “inside”.

1.1.5.2 Protocols and Choreography

Part of a component’s specification is the set of protocols it implements. A protocol
specifies what messages the component sends and receives when it collaborates with
another component and the choreography of those messages – when they can be sent

February 6, 2002 UML for EDOC - CCA 15

UML for EDOC - CCA

and received. Each protocol the component supports is provided via a “port”, the
connection point between components.

Protocols, ports and choreography comprise the contract on the outside of the
component. Protocols are also used for large-grain interactions, such as for B2B
components.

The protocol specifies the conversation between two components (via their ports).
Each component that is using that protocol must use it from the perspective of the
“initiating role” or the “responding role”. Each of these components will use every port
in the protocol, but in complementary directions.

For example, a protocol “X” has a flow port “A” that initiates a message and a flow port
“B” that responds to a message. Component “Y” which responds to protocol “X” will
also receive “A” and initiate “B”. But, Component “Z” which initiates protocol “X” will
also initiate message “A” and respond to message “B” – thus initiating a protocol will
“invert” the directions of all ports in the protocol.

1.1.5.3 Primitive and Composed Components

Components may be abstract (having only an outside) or concrete (having an inside and
outside). Frequently a concrete component inherits its external contract from an
abstract component – implementing that component.

There may be any number of implementations for an ProcessComponent and various
ways to “bind” the correct implementation when a component is used.

The two basic kinds of concrete components are:

• Primitive components – those that are built with programming languages or by
wrapping legacy systems.

• Composed Components – Components that are built from other components; these
use other components to implement the new components functionality. Composed
components are defined using a composition.

1.1.5.4 Composition

Compositions define how components are used. Inside of a composition components
are used, configured and connected. This connected set of component usages
implements the behavior of the composition in terms of these other components – which
may be primitive, composed or abstract components.

Compositions are used to build composed components out of other components and to
describe community processes – how a set of large grain components works together for
some purpose. Components used in a community process represent the roles of that
process.

Central to compositions are the connections between components, values for
configuration properties and the ability to bind concrete components to a component
usage.

16 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

1.1.5.5 Document & Information Model

The information that flows between components is described in a Document Model,
the structure of information exchanged. The document model also forms the basis for
information entities and a generic information model. The information model is acted
on by CCA ProcessComponents (see the Entities profile, Section 3, below).

1.1.5.6 Model Management

To help organize the elements of a CCA model a “package” structure is used exactly as
it is used in UML. Packages provide a hierarchical name space in which to define
components and component artifacts. Model elements that are specific to a process,
protocol or component may also be nested within these, since they also act as packages.

February 6, 2002 UML for EDOC - CCA 17

UML for EDOC - CCA

1.2 CCA Metamodel

DirectionType
- initiates
- responds

<<Enumeration>>

MultiPort
ProtocolPort

<<boundary>>

RespondingRole
- name : String

InitiatingRole
- name : String

Protocol

1
+uses

1

0..1

1

+responder
0..1

1

0..1

1+initiator

0..1

1

Transition
- preCondit ion : Status

PortActivityPortConnector

DataElement
(from DocumentModel)

FlowPort
<<boundary>>

0..1

n

+type 0..1

n

ProcessComponent
- granularity : GranularityKind
- isPersistent : Boolean = false
- primitiveKind : String = ""
- primitiveSpec : String

Composition

ContextualBinding

1

n

+owner1

+bindings
n

n
1

n
+bindsTo1

PropertyDefinition
- name : String
- initial : Expression
- isLocked : Boolean

1

n

+type1

n

0..1

0..n +typeProperty

0..1+constrains

0..n

1

n

+component 1

+properties n

ComponentUsage
name : String

n

1

n

+uses
1

Uses

n

1

+uses
n

+owner1

n

1

n

+fills
1

PropertyValue
- value : Expression

n

1

n

+fills
1

1

n

+owner

1

n

OperationPort
<<boundary>>

Connection PseudoState
- kind : PseudostateKind

Node
- name : StringAbstractTransition

n 1

+outgoing
n

+source

1

n 1

+incoming

n

+target

1

Choreography
nn

n

+connections

n

n

0..1

+subtypes

n

+supertype

0..1

CommunityProcess

Status
success
timeoutFailure
technicalFailure
businessFailure
anyFailure
anyStatus

<<Enumeration>>

PseudostateKind
choice
fork
initial
join
success
failure

<<Enumeration>>

Interface

PortOwner

Port
- name : String
- isSynchronous : Boolean
- isTransactional : Boolean
- direction : DirectionType
- postCondition : Status

<<boundary>>
n

1

+ports n

+owner1

UsageContext

PortUsage

1

n

+represents

1

n

1

n

+extent 1

+portsUsed

n

IsComposition

IsChoreography

GranularityKind
- program
- owned
- shared

<<Enumeration>>

Figure 3: CCA Major elements

Figure 3 above is a combined model of the major elements of the CCA component
specification defined below.

1.2.1 Structural Specification

The structural specification represents the physical structure of the component contract,
defining the component and its ports.

18 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

DirectionType
- initiates
- responds

<<Enumeration>>

Port
- name : String
- isSynchronous : Boolean
- isTransactional : Boolean
- direction : DirectionType
- postCondit ion : Status

<<boundary>>

PortOwner

n

1

+portsn

+owner 1

Ports

ProtocolPort
<<boundary>>

RespondingRole
- name : String

InitiatingRole
- name : String

Protocol

1

+uses

1

ProtocolType
0..1

1

+responder 0..1

1

0..1
1+initiator

0..1
1

DataElement
(from DocumentModel)

FlowPort
<<boundary>>

0..1

n

+type 0..1

n
FlowType

ProcessComponent
- granularity : GranularityKind
- isPersistent : Boolean = false
- primitiveKind : String = ""
- primitiveSpec : String

PropertyDefinition
- name : String
- initial : Expression
- isLocked : Boolean

1

n

+type1

n
PropertyType

0..1

0..n +typeProperty

0..1+constrains

0..n
DynType

1

n

+component 1

+properties n

Properties

MultiPort

Composition

Choreography

n
0..1

+subtypes
n

Generalization

+supertype
0..1

IsChoreography

OperationPort
<<boundary>>

Interface

UsageContext

IsComposition

GranularityKind
- program
- owned
- shared

<<Enumeration>>

Figure 4: Structural Specification Metamodel

A ProcessComponent represents the contract for a component that performs actions –
it “does something”. A ProcessComponent may define a set of Ports for interaction
with other ProcessComponents. The ProcessComponent defines the external contract of
the component in terms of ports and a Choreography of port activities (sending or
receiving messages or initiating sub-protocols). At a high level of abstraction a
ProcessComponent can represent a business partner, other ProcessComponents
represent business activities or finer-grain capabilities.

The contract of the ProcessComponent is realized via ports. A port defines a point of
interaction between ProcessComponents. The simpler form of port is the FlowPort,
which may produce or consume a single data type. More complex interactions
between components use a ProtocolPort, which refers to a Protocol, a complete
“conversation” between components. Protocols may also use other protocols as sub-
protocols. Protocols, like ProcessComponents, are defined in terms of the set of ports

February 6, 2002 UML for EDOC - CCA 19

UML for EDOC - CCA

they realize and the choreography of interactions across those ports. A protocol may
optionally define names for the initiating and responding roles.

ProcessComponents may have Property Definitions. A property definition defines a
configuration parameter of the component, which can be set, when the component is
used.

The behavior of a ProcessComponent may be further specified by its composition, the
composition shows how other components are used to define and implement the
composite component. The specification of the ProcessComponent and protocol may
include Choreography to sequence the actions of multiple ports and their associated
actions. The actions of each port may be Choreographed. Composition and
Choreography are defined in their own sections.

A ProcessComponent may have a supertype (derived from Choreography). One
common use of supertype is to place abstract ProcessComponents within compositions
and then produce separate realizations of those components as subtype composite or
primitive components, which can then be substituted for the abstract components when
the composition is used, or even at runtime.

An Interface represents a standard object interface. It may contain OperationPorts,
representing call-return semantics, and FlowPorts – representing one-way operations.

A MultiPort is a grouping of ports whose actions are tied together. Information must
be available on all sub-ports of the MultiPort for any action to occur within an attached
component.

An OperationPort defines a port, which realizes a typical request/response operation
and allows ProcessComponents to represent both document oriented (FlowPort) and
method oriented (OperationPort) subsystems.

1.2.1.1 ProcessComponent

Semantics

A ProcessComponent represents an active processing unit – it does something. A
ProcessComponent may realize a set of Ports for interaction with other
ProcessComponents and it may be configured with properties.

Each ProcessComponent defines a set of ports for interaction with other
ProcessComponents and has a set of properties that are used to configure the
ProcessComponent when it is used.

The order in which actions of the Process Component’s ports do something may be
specified using Choreography. The choreography of a ProcessComponent specifies the
external temporal contact of the ProcessComponent (when it will do what) based on the
actions of its ports and the ports in protocols of its ports.

UML base element(s) in the Profile and Stereotype

Classifier Stereotyped as <<ProcessComponent>>

20 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

Fully Scoped name

ECA::CCA::ProcessComponent

Owned by

Package

Extends

Composition (indicating that the ProcessComponent may be composed of other
ProcessComponents and that its ports may be choreographed.)

Package (Indicating that a ProcessComponent may own the specification of other
elements)

UsageContext (Indicating that the ProcessComponent may be the context for
PortUsages representing the activities of its ports.).

Properties

Granularity

A GranularityKind which defines the scope in which the component operates. The
values may be:

• Program – the component is local to a program instance (default)

• Owned – the component is visible outside of the scope of a particular
program but dedicated to a particular task or session which controls its life
cycle.

• Shared – the component is generally visible to external entities via some
kind of distributed infrastructure.

Specializations of CCA may define additional granularity values.

UML Representation

Tagged value

isPersistent

Indicates that the component stores session specific state across interactions. The
mechanisms for management of sessions are defined outside of the scope of CCA.

UML Representation

Tagged value

February 6, 2002 UML for EDOC - CCA 21

UML for EDOC - CCA

primitiveKind

Components implementation includes additional implementation semantics defined
elsewhere, perhaps in an action language or programming language. If the
component has an implementation specification primitiveKind specifies the
implementation specific type, normally the name of a programming language. If
primitive kind is blank, the composition is the full specification of the components
implantation – the component is not primitive.

UML Representation

Tagged value

primitiveSpec

If primitiveKind has a value, primitiveSpec identifies the location of the
implementation. The syntax of primitiveKind is implementation specific.

UML Representation

Tagged value

Related elements

Ports (via “PortOwner”)

“Ports” is the set of Ports on the ProcessComponent. Each port provides a
connection point for interaction with other components or services and realizes a
specific protocol. The protocol may be simple and use a “FlowPort” or the protocol
may be complex and use a “ProtocolPort” or an “OperationPort”. If allowed by its
protocol, a port may send and receive information.

UML Representation

Required Aggregation Association from Port (Ports)

Supertype (zero or one) , Subtypes (any number)

A ProcessComponent may inherit specification elements (ports, properties & states
(from Choreography) from a supertype. That supertype must also be a
ProcessComponent. A subtype component is bound by the contract of its supertypes
but it may add elements, override property values and restrict referenced types.

A component may be substituted by a subtype of that component.

UML Representation

Generalization

22 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

Properties (Any number)

To make a component capable of being reused in a variety of conditions it is
necessary to be able to define and set properties of that component. Properties
represents the list of properties defined for this component.

UML Representation

Classifier.feature referencing an attribute.

Constraints

A process component may only inherit from another process component.

1.2.1.2 Port

Semantics

A port realizes a simple or complex conversation for a ProcessComponent or protocol.
All interactions with a ProcessComponent are done via one of its ports.

When a component is instantiated, each of its ports is instantiated as well, providing a
well-defined connection point for other components.

Each port is connected with collaborative components that speak the same protocol.
Multi-party conversions are defined by components using multiple ports, one for each
kind of party.

Business Example: Flight reservation Port

UML base element(s) in the Profile and Stereotype

Class (abstract)

Fully Scoped name

ECA::CCA::Port

Owned by

ProcessComponent or Protocol via PortOwner

Extends

None

February 6, 2002 UML for EDOC - CCA 23

UML for EDOC - CCA

Properties

isTransactional

Indicates that interactions with the component are transactional & atomic (in most
implementations this will require that a transaction be started on receipt of a
message). Non-transactional components either maintain no state or must execute
within a transactional component. The mechanisms for management of transactions
are defined outside of the scope of CCA.

UML Representation

Tagged Value

isSynchronous

A port may interact synchronously or asynchronously. A port that is marked as
synchronous is required to interact using synchronous messages and return values.

UML Representation

Tagged Value

name

The name of the port. The name will, by default, be the same as the name of the
protocol role or document type it realises.

UML Representation

ModelElement::name

Direction

Indicates that the port will either initiate or respond to the related type. An initiating
port will send the first message. Note that by using ProtocolPorts a port may be the
initiator of some protocols and the responder to others. The values of DirectionKind
may be:

Initiates – this port will initiate the conversation by sending the first message.

Responds – this port will respond to the initial message and (potentially) continue
the conversation.

UML Representation

Tagged Value and stereotype of “Owner” relation.

24 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

PostCondition

The status of the conversation indicated by the use of this port. This status may be
queried in the postCondition of a transition.

UML Representation

Tagged Value

Related elements

“Owner” ProcessComponent or Protocol (Exactly One via PortOwner)

A Port specifies the realization of protocol by a ProcessComponent. This relation
specifies the ProcessComponent that realizes the protocol.

UML Representation

Required aggregate association (Ports). This association will have a stereotype
of “initiates” or “responds” to indicate “direction”.

Constraints

None

1.2.1.3 FlowPort

Semantics

A Flow Port is a port which defines a data flow in or out of the port on behalf of the
owning component or protocol.

UML base element(s) in the Profile and Stereotype

Class stereotyped as <<FlowPort>>

Fully Scoped name

ECA::CCA::FlowPort

Owned by

PortOwner

Extends

Port

February 6, 2002 UML for EDOC - CCA 25

UML for EDOC - CCA

Properties

None

Related elements

type

The type of data element that may flow into our out of the port.

UML Representation

Required relation

TypeProperty

The type of information sent or received by this port as determined by a
configurable property. The expression must return a valid type name. This is used
to build generic components that may have the type of their ports configured. If
type and typeProperty are both set then the property expression must return the
name of a subtype of type.

UML Representation

Tagged value containing the name of the property attribute.

Constraints

None

1.2.1.4 ProtocolPort

Semantics

A protocol port is a port which defines the use of a protocol A protocol port is used for
potentially complex two-way interactions between components, such as is common in
B2B protocols. Since a protocol has two “roles” (the initiator and responder), the
direction is used to determine which role the protocol port is taking on.

UML base element(s) in the Profile and Stereotype

Class stereotyped as <<ProtocolPort>>

Fully Scoped name

ECA::CCA::ProtocolPort

26 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

Owned by

PortOwner

Extends

Port

Properties

None

Related elements

uses

The protocol to use, which becomes the specification of this port’s behavior.

UML Representation

Generalization – the ProtocolPort inherits the Protocol.

Constraints

None

1.2.1.5 OperationPort

Semantics

An operation port represents the typical call/return pattern of an operation. The
OperationPort is a PortOwner which is constrained to contain only flow ports, exactly
one of which must have its direction set to “initiates”. The other “responds” ports will
be the return values of the operation.

UML base element(s) in the Profile and Stereotype

Operation (no stereotype)

Note1: The type of the “initiates” flow port will be the signature of the operation. Each
attribute of the type will be one parameter of the operation.

Note2: Owned flow ports of postCondition==Success and direction==”responds” will
be a return value for the operation. All other flow ports where direction==”responds”
will correspond to an exception.

February 6, 2002 UML for EDOC - CCA 27

UML for EDOC - CCA

Fully Scoped name

ECA::CCA::OperationPort

Owned by

PortOwner (Protocol or ProcessComponent)

Extends

Port and PortOwner

Properties

None

Related elements

Ports (Via PortOwner)

The flow ports representing the call and returns.

UML Representation

Initiates ports – signature of the operation

Responds ports – return values of the operation.

Constraints

As a PortOwner, the OperationPort:

• May only contain FlowPorts

• Must contain exactly one flow port with direction set to "responds" (the call)

1.2.1.6 MultiPort

Semantics

A MultiPort combines a set of ports which are behaviourally related. Each port owned
by the MultiPort will “buffer” information sent to that port until all the ports within the
MultiPort have received data, at this time all the ports will send their data.

UML base element(s) in the Profile and Stereotype

Class stereotyped as <<MultiPort>>

28 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

Fully Scoped name

ECA::CCA::MultiPort

Owned by

PortOwner

Extends

Port & PortOwner

Properties

None

Related elements

Ports (Via PortOwner)

The flow ports owned by the MultiPort.

UML Representation

Required aggregation association

Constraints

Owned ports will not forward data until all sub-ports have received data.

1.2.1.7 Protocol

Semantics

A protocol defines a type of conversation between two parties, the initiator and
responder. One protocol role is the initiator of the conversation and the other the
responder. However, after the conversation has been initiated, individual messages and
sub-protocols may by initiated by either party. The ports of a protocol are specified with
respect to the responder.

Within the protocol are sub-ports . Each port contained by a protocol defines a sub-
action of that protocol until, ultimately, everything is defined in terms of FlowPorts.

A Protocol is also a choreography, indicating that activities of its ports (and, potentially
their sub-ports) may be sequenced using an activity graph.

A protocol must be used by two ProtocolPorts to become active.

February 6, 2002 UML for EDOC - CCA 29

UML for EDOC - CCA

The protocol specifies the conversation between two ProcessComponents (via their
ports). Each component that is using that protocol must use it from the perspective of
the “initiating role” or the “responding role”. Each of these components will use every
port in the protocol, but in complementary directions.

For example, a protocol “X” has a flow port “A” that initiates a message and a flow port
“B” that responds to a message. Component “Y” which responds to protocol “X” will
also receive “A” and initiate “B”. But, Component “Z” which initiates protocol “X” will
initiate message “A” and respond to message “B” – thus initiating a protocol will
“invert” the directions of all ports in the protocol.

UML base element(s) in the Profile and Stereotype

Class stereotyped as <<Protocol>>

Fully Scoped name

ECA::CCA::Protocol

Owned by

Package

Extends

Choreography – Indicating that the contract of the protocol includes a sequencing of the
port activities.

Package – Indicating that the protocol may contain the specification of other model
elements (Most probably other protocols or documents).

Properties

None

Related elements

Ports (Via PortOwner)

The ports which define the sub-actions of the protocol. For example, a “callReturn”
protocol may have a “call” FlowPort and a “return” FlowPort.

UML Representation

Required aggregate association

Initiator

The role which sends the first message in the protocol. Note that this is optional, in
which case the initiating role name will be “Initiator”.

30 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

UML Representation

Required relation

Responder

The role which receives the first message in the protocol. Note that this is optional,
in which case the responding role name will be “Responder”.

UML Representation

Required relation

Constraints

None

1.2.1.8 Interface

Semantics

An interface is a protocol constrained to match the capabilities of the typical object
interface. It is constrained to only contain OperationPorts and FlowPorts and all of its
ports must respond to the interaction (making interfaces one-way).

Each OperationPort or FlowPort in the Interface will map to a method. A ProtocolPort
which initiates the Interface will call the interface. A ProtocolPort which Responds will
implement the interface.

UML base element(s) in the Profile and Stereotype

Classifier (Usually Interface, but any classifier will do)

Fully Scoped name

ECA::CCA::Interface

Owned by

Package

Extends

Protocol

Properties

None

February 6, 2002 UML for EDOC - CCA 31

UML for EDOC - CCA

Related elements

Ports (Via Protocol & PortOwner)

The ports which define the sub-actions of the protocol. For example, a “callReturn”
protocol may have a “call” flowport and a “return” port.

Initiator (Via Protocol)

The role which calls the interface. Note that this is optional, in which case the
initiating role name will be “Initiator”. roles.

Responder (Via Protocol)

The role which implements the interface. Note that this is optional, in which case
the responding role name will be “Responder”.

Constraints

• The Ports related by the “Ports” association must;

• be of type OperationPort or FlowPort.

• have direction == ”responds”.

1.2.1.9 InitiatingRole

Semantics

The role of the protocol which will send the first message.

UML base element(s) in the Profile and Stereotype

Class stereotyped as <InitiatingRole>

Fully Scoped name

ECA::CCA::InitiatingRole

Owned by

Protocol

Extends

None

32 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

Properties

name

Role name

UML Representation

ModelElement::name

Related elements

Protocol

The protocol for which the role is being defined.

UML Representation

Required relation

Constraints

None

1.2.1.10 RespondingRole

Semantics

The role in the protocol which will receive the first message.

UML base element(s) in the Profile and Stereotype

Class stereotyped as <RespondingRole>

Fully Scoped name

ECA::CCA::RespondingRole

Owned by

Protocol

Extends

None

February 6, 2002 UML for EDOC - CCA 33

UML for EDOC - CCA

Properties

Name

UML Representation

ModelElement::name

Related elements

Protocol

The protocol for which the role is being defined.

UML Representation

Required relation

Constraints

None

1.2.1.11 PropertyDefinition

Semantics

To allow for greater flexibility and reuse, ProcessComponents may have properties
which may be set when the ProcessComponent is used. A PropertyDefinition defines
that such a property exists, its name and type.

UML base element(s) in the Profile and Stereotype

Attribute (No stereotype)

Fully Scoped name

ECA::CCA::PropertyDefinition

Owned by

ProcessComponent

Extends

None

34 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

Properties

name

Name of the property being modelled

UML Representation

ModelElement:name

initial

An expression indicating the initial & default value.

UML Representation

Attribute::initialValue

isLocked

The property may not be changed.

UML Representation

StructuralFeature::changeability

Related elements

component

The owning component

UML Representation

Classifier.feature referencing an attribute.

type

The type of the property

UML Representation

StructuralFeature::type

Constraints

If the “constrains” relation contains any links;

February 6, 2002 UML for EDOC - CCA 35

UML for EDOC - CCA

• The PropertyValue must contain the fully qualified name of a DataElement.

PortOwner

Semantics

An abstract meta-class used to group the meta-classes that may own ports: Process
component, Protocol, OperationPort and MultiPort.

UML base element(s) in the Profile and Stereotype

None (Abstract)

Fully Scoped name

ECA::CCA::PortOwner

Owned by

None

Extends

None

Related elements

ports

The owned ports

UML Representation

Required relation

Constraints

None

36 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

1.2.2 Choreography

A Choreography uses
transitions to order
usages of ports.

Status
- success
- timeoutFailure
- technicalFailure
- businessFailure
- anyFailure
- anyStatus

<<Enumeration>>

PseudoState
- kind : PseudostateKind

Transition
- preCondit ion : Status

PortActivity

Connection

PseudostateKind
- choice
- fork
- initial
- join
- success
- failure

<<Enumeration>>

UsageContext

Port
- name : String
- isSynchronous : Boolean
- isTransactional : Boolean
- direction : Direct ionType
- postCondition : Status

<<boundary>>

PortUsage

1

n

+extent
1

+portsUsed
n

PortUsages

1

n

+represents

1

n
Represents

Node
- name : String

AbstractTransition

n
1

+outgoing
n

+source

1

Source
n1

+incoming
n

+target

1

Target

Choreography

n
+nodes

n

Nodes

n +connectionsn

Connections

n

0..1

+subtypes
n Generalization

+supertype

0..1

Figure 5: Choreography Metamodel

A Choreography specifies how messages will flow between PortUsages. The
choreography may be externally oriented, specifying the contract a component will
have with other components or, it may be internally oriented, specifying the flow of
messages within a composition. External chirographies are shown as an activity

February 6, 2002 UML for EDOC - CCA 37

UML for EDOC - CCA

graph while internal choreography is shown as part of a collaboration. An external
choreography may be defined for a protocol or a ProcessComponent.

A Choreography uses Connections and transitions to order port messages as a
state machine. Each “node” in the choreography must refer to a state or a port
usage.

Choreography is an abstract capability that is inherited by ProcessComponents and
protocols.

Initial, interim and terminating states are known as a “PseudoState” as defined in
UML. CCA adds the pseudo states for success and failure end-states.

Ordering is controlled by connections between nodes (state and port usage being a
kind of node). Transitions specify flow of control that will occur if the conditions
(Precondition) are met. Transitions between port activities specify what should
happen (contractually), while Connections between PortConnections specify what
will happen at runtime.

1.2.2.1 Choreography

Semantics

An abstract class inherited by protocol and ProcessComponent which owns nodes and
AbstractTransitions. A choreography specifies the ordering of port activities.

UML base element(s) in the Profile and Stereotype

Choreography - State Machine stereotyped as <<choreography>>: (context references
classifier)

Fully Scoped name

ECA::CCA::Choreography

Owned by

None

Extends

None

Properties

None

38 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

Related elements

Nodes

The states and port usages to be choreographed.

UML Representation

PseudoState - StateMachine.top

PortActivity ::SubmachineState

AbstractTransitions

The connections and transitions between nodes.

UML Representation

Transition: StateMachine:transition

Connection: Collaboration::AssociationRole

Supertype (zero or one) , Subtypes (any number)

A ProcessComponent, protocol or CommunityProcess may inherit specification
elements (ports, properties & states (from Choreography) from a supertype. That
supertype must also be a ProcessComponent. A subtype component is bound by the
contract of its supertypes but it may add elements, override property values and
restrict referenced types.

A component may be substituted by a subtype.

Constraints: The subtype-supertype relation may only exist between elements of the
same meta-type. A ProcessComponent may only inherit from another
ProcessComponent. A Protocol may only inherit from another Protocol and a
CommunityProcess may only inherit from another CommunityProcess.

UML Representation

Generalization of classifier related by context.

1.2.2.2 Node

Semantics

Node is an abstract element that specifies something that can be the source and/or target
of a connection or transition and thus ordered within the choreographed process. The
nodes that do “real work” are PortUsages.

February 6, 2002 UML for EDOC - CCA 39

UML for EDOC - CCA

UML base element(s) in the Profile and Stereotype

None (abstract)

Fully Scoped name

ECA::CCA::Node

Owned by

Choreography

Extends

None

Properties

name

UML Representation

ModelElement:name

Related elements

Choreography

The owning protocol or ProcessComponent.

UML Representation

See Choreogrphy

Incoming

Transitions that cause this node to become active.

UML Representation

Transition: State:incoming

Connection: AssociationEndRole

outgoing

Nodes that may become active after this node completes.

40 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

UML Representation

State: outgoing

Connection: AssociationEndRole

Constraints

None

1.2.2.3 AbstractTransition

Semantics

The flow of data and/or control between two nodes.

UML base element(s) in the Profile and Stereotype

None - abstract

Fully Scoped name

ECA::CCA::AbstractTransition

Owned by

Choreography

Extends

None

Properties

None

Related elements

Choreography

The owning choreography.

UML Representation

See Choreography

February 6, 2002 UML for EDOC - CCA 41

UML for EDOC - CCA

Source

The node which is transferring control and/or data.

UML Representation

Connection: AssociationEndRole

Transition: Transition:source

Target

The node to which data and/or control will be transferred.

UML Representation

Connection: AssociationEndRole

Transition: Transition:target

Constraints

The source and target nodes associated with the AbstractTransition must be owned by
the same choreography as the AbstractTransition.

1.2.2.4 Transition

Semantics

The contractual specification that the related nodes will activate based on the ordering
imposed by the set of transitions between nodes. Transitions, which declare a contract
may be differentiated from Connections which realise a contract.

UML base element(s) in the Profile and Stereotype

Transition (No Stereotype)

Fully Scoped name

ECA::CCA::Transition

Owned by

Choreography

Extends

AbstractTransition

42 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

Properties

preCondition

A constraint on the transition such that it may only fire if the prior PortUsage
terminated with the referenced condition.

UML Representation

Transition:guard

Related elements

Choreography (Via AbstractTransition)

The owning choreography.

UML Representation

See Choreography

Source

The node which is transferring control and/or data.

UML Representation

Transition: Transition:source

Target

The node to which data and/or control will be transferred.

UML Representation

Transition: Transition:target

Constraints

A transition may not connect PortConnectors.

1.2.2.5 PortUsage

Semantics

The usage of a port as part of a choreography.

February 6, 2002 UML for EDOC - CCA 43

UML for EDOC - CCA

UML base element(s) in the Profile and Stereotype

None (Abstract)

Fully Scoped name

ECA::CCA::PortUsage

Owned by

Choreography

Extends

Node & Usage Context

Properties

None

Related elements

extent

The component, component usage or PortUsage to which the PortUsage is attached.

If the extent is a ComponentUsage the PortUsage must be a PortConnector for a port
of the underlying ProcessComponent. This allows Connections between
components being used within a composition.

If the extent is a PortUsage the PortUsage must represent a ProtocolPort which owns
the represented usage. This allows the choreography of nested ports.

If the extent is a ProcessComponent the usage represents a port on the
ProcessComponent and that ProcessComponent must be the composition owning
both the port and the port usage. This allows Connections and transitions to be
connected to the external ports of a component.

UML Representation

State machine: Owner of state machine

Collaboration: Association Role

Represents

The port which the PortUsage uses.

44 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

UML Representation

State machine: tagged value

Collaboration: ClassifierRole::base

Constraints

None

1.2.2.6 UsageContext

Semantics

When a port is used within a choreography it must be used within some context.
UsageContext represents an abstract supertype of all elements that may be the context
of a port. These are;

• ProcessComponent – as the owner of port activities and port connectors.

• ComponentUsage – as the owner of port connectors, representing the use of
each of the component’s ports.

• PortUsages – representing ports nested via protocols.

UML base element(s) in the Profile and Stereotype

None (abstract)

Fully Scoped name

ECA::CCA::UsageContext

Owned by

None

Extends

None

Properties

None

February 6, 2002 UML for EDOC - CCA 45

UML for EDOC - CCA

Related elements

PortsUsed

Provides context for port usage

UML Representation

State machine: owned states

Collaboration: AssociationRole

Constraints

None

1.2.2.7 PortActivity

Semantics

Port activity is state, part of the “contract” of a ProcessComponent or protocol,
specifying the activation of a port such the ordering of port activities can be
choreographed with transitions. A PortActivity (used with transitions) defines the
contract of the component while a PortConnector (used with Connections) specifies the
realisation of a component’s actions in terms of other components.

UML base element(s) in the Profile and Stereotype

CompositeState Stereotyped as <<PortActivity>>

Fully Scoped name

ECA::CCA::PortActivity

Owned by

Protocol or ProcessComponent via Choreography

Extends

PortUsage

Properties

None

46 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

Related elements

None

Constraints

Port Activities may only be connected using transitions.

1.2.2.8 PseudoState

Semantics

PseudoState specifies starting, ending or intermediate states in the choreography of the
contract of a protocol or ProcessComponent.

UML base element(s) in the Profile and Stereotype

Depending on value of kind:

• Success – FinalState Stereotyped as <<success>>

• Failure – FinalState Stereotyped as <<failure>>

• All Others - PseudoState (no stereotype) with kind set to same value.

Fully Scoped name

ECA::CCA::PseudoState

Owned by

Choreography

Extends

Node

Properties

Kind ; PseudostateKind

choice Splits an incoming transition into several disjoint outgoing transition. Each
outgoing transition has a guard condition that is evaluated after prior actions on the
incoming path have been completed. At least one outgoing transition must be
enabled or the model is ill-formed.

fork Splits an incoming transition into several concurrent outgoing transitions. All
the transitions fire together.

February 6, 2002 UML for EDOC - CCA 47

UML for EDOC - CCA

initial The default target of a transition to the enclosing composite state.

join Merges transitions from concurrent regions into a single outgoing transition.
Join PseudoState will proceed after all its incoming Transition have triggered.

success The end-state indicating that the choreography ended in success.

failure The end-state indicating that the choreography ended in failure.

Related elements

None

Constraints

PseudoStates may only be connected using transitions.

1.2.3 Composition

Composition is an abstract capability that is used for ProcessComponents and for
community processes. Compositions shows how a set of components can be used to
define and perhaps to implement a process.

48 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

PortConnector

Connection

Dependencies
are informative,
not normative.

UsageContext

Port
- name : String
- isSynchronous : Boolean
- isTransactional : Boolean
- direction : DirectionType
- postCondit ion : Status

PortUsage

1

n

+extent1

+portsUsedn

PortUsages

1

n

+represents
1

n

Represents

ContextualBinding

Composit ion owns

1

n

+owner 1

+bindings n

Bindings

ProcessComponent

1

n

+bindsTo
1

n BindsTo

creates

ComponentUsage
name : String

1

n

+fills 1

n

Fills

1

n

+owner

1

+uses
n

ComponentUsages

creates

1

n +uses

1

n

Uses

PropertyValue
- value : Expression

n

1

+configurationn

+owner1

PropertyDefinition
- name : String
- initial : Expression
- isLocked : Boolean

n

1

n

+fills 1

ValueFor

CommunityProcess

AbstractTransitionChoreography
n

+connect ions

n

Connections

IsChoreography

n
0..1

+subtypes
n

Generalization

+supertype
0..1

connects

IsComposition

Figure 6: Composition metamodel

A composition contains ComponentUsages to show how other ProcessComponents
may be used to define the composite. Note that the same ProcessComponent may be
used multiple times for different purposes. Each time a ProcessComponent is used,
each of its ports will also be used with a “PortConnector”. A port connector shows the
connection point for each use of that component within the composition, including the
ports on the component being defined.

Attached to a ProcessComponent usage are PropertyValues, configuring the
ProcessComponent with properties that have been defined in property definitions.

A composition also contains a set of “Connections”. A connectionjoins compatible
ports on ProcessComponents together to define a flow of data. The other side will

February 6, 2002 UML for EDOC - CCA 49

UML for EDOC - CCA

receive anything sent out of one side. So a Connection is a form of logical event
registration (one-way registration for a flow port or Operation port, two-way
registration for a ProtocolPort).

A Contextual Binding allows realized ProcessComponents to be substituted for
abstract ProcessComponents when a composition is used.

Compositions may be ProcessComponents or CommunityProcesses.
CommunityProcess define a top-level process in terms of the roles played by process
components representing actors in the process.

1.2.3.1 Composition

Semantics

Composition is an abstract class for CommunityProcesses or ProcessComponents.
Compositions describe how instances of ProcessComponents (called
ComponentUsages) are configured (with PropertyValues and ContextualBindings) and
connected (with Connections) to implement the composed ProcessComponent or
CommunityProcess.

UML base element(s) in the Profile and Stereotype

Collaboration (with represented classifier being the ProcessComponent or
CommnityProcess being defined) – stereotyped as <<Composition>>

Fully Scoped name

ECA::CCA::Compsition

Owned by

None

Extends

Choreography

Properties

None

Related elements

bindings

ContextualBindings defined within the context of the composition.

50 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

UML Representation

ModelElement::clientDependency

uses

ComponentUsages defined within the context of the composition.

UML Representation

Collaboration:: (Owned ClassifierRoles)

Connection (via choreography and AbstractTransition)

The flow of data and control between port connectors.

UML Representation

Collaboration:: ownedElement (Owned AssociationRoles)

PortConnector (via Choreography and nodes)

The port instances to be connected by Connections.

UML Representation

Collaboration:: (Owned ClassifierRoles)

Constraints

None

1.2.3.2 ComponentUsage

Semantics

A composition uses other ProcessComponents to define the process of the composition
(a community process or ProcessComponent), “ComponentUsage” represents such a
use of a component. The “uses” relation references the kind of component being used.
Component Usage is part of the “inside” of a composed component.

The composition can be thought of as a template of ProcessComponent instances. Each
component instance will have a “ComponentUsage” to say what kind of
ProcessComponent it is, what its property values are and how it is connected to other
ProcessComponents. A ComponentUsage will cause a ProcessComponent instance to
be created at runtime (this instantiation may be real or virtual).

Each use of a ProcessComponent will carry with it a set of “portConnectors” which will
be the connection points to other ProcessComponents.

February 6, 2002 UML for EDOC - CCA 51

UML for EDOC - CCA

UML base element(s) in the Profile and Stereotype

ClassifierRole Stereotyped as “ComponentUsage”

Fully Scoped name

ECA::CCA::ComponentUsage

Owned by

Composition

Extends

UsageContext

Properties

Name

The name of the activity for which the component is being used.

UML Representation

ModelElement::name

Related elements

owner

The owning composition

UML Representation

ClassifierRole::(owning collaboration)

Uses

The type of ProcessComponent to use.

UML Representation

ClassifierRole::base

PortsUsed (Via UsageContext)

PortConnectors for each port on the used component.

52 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

UML Representation

AssociationRole

Constraints

None

1.2.3.3 PortConnector

Semantics

The PortConnector provides a “connection point” for ComponentUsages within a
composition and exposes the defined ports within the composition. The connections
between PortConnectors are made with Connections.

PortConnections are “implied” by other model elements and will normally be created by
design tools. PortConnections should be created as follows:

• For each ComponentUsage there will be exactly one PortUsage for each port
defined for the ProcessComponent being used.

• For each port on the ProcessComponent being defined there will be exactly one
PortUsage to support Connections to and from “outside” ports.

• For each port within a protocol, OperationPort or MultiPort created for one of the
above two reasons, a PortConnector may be created for each contained port. This
allows Connections to be connected to finer grain elements, such as Connections
within a protocol.

In summary, the “ProcessComponent” / “Port” pattern which defines the components
external interface is essentially replicated in the “ComponentUsage” / “portConnector”
part of the composition. Each time a component is used, each of its ports is used as
well. Sub-ports of protocols also become PortConnectors.

UML base element(s) in the Profile and Stereotype

ClassifierRole stereotyped as PortConnector

Fully Scoped name

ECA::CCA::PortConnector

Owned by

Composition

Extends

PortUsage

February 6, 2002 UML for EDOC - CCA 53

UML for EDOC - CCA

Properties

None

Related elements

Represents (via PortUsage)

The port of which this is a port.

Contexts (via PortUsage)

The associated owner of the port.

Incoming and Outgoing Connections (Via PortUsage and Node)

The Connections.

Constraints

PortConnectors are intended to be connected with Connections, Transitions may not be
connected to a PortConnector

1.2.3.4 Connection

Semantics

A Connection connects two PortConnectors within a composition. Each port can
produce and/or consume message events. The connection logically registers each port
connector as a listener to the other, effectively making them collaborators.

A component only declares that given ports will produce or consume given messages, it
doesn’t not know “who” will be on the other side. The composition shows how a
ProcessComponent will be used within a context and thus how it will be connected to
other components within that context. A Connection connects exactly two
PortConnectors.

Connections may be distinguished from transitions in that Connections specify what
events will flow between ProcessComponents while transitions specify the contract of
port ordering.

UML base element(s) in the Profile and Stereotype

AssociationRole optionally stereotyped as <<Connection>>

Note: A Connection to a port contained by an interface will be represented by an
operation, not a classifier. In this case the association role is directed to the
ProtocolPort realising the interface and a message attached with a call action
referencing the operation in question.

54 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

Fully Scoped name

ECA::CCA::Connection

Owned by

Composition

Extends

AbstractTransition

Properties

None

Related elements

Source and Target PortConnectors (Via PortUsage, Node &
AbstractTransition)

The PortConnectors between which the Connection is being defined.

Constraints

• The source and target nodes of a Connection must be PortConnectors.

• The source and target nodes must be port connectors owned by the same
composition as the Connection.

1.2.3.5 PropertyValue

Semantics

To be useful in a variety of conditions, a ProcessComponent may have configuration
properties –which are defined by a PropertyDefinition. When the component is used in
a ComponentUsage those properties values may be set using a PropertyValue. These
values will be used to construct or configure a component instance.

A PropertyValue should be included whenever the default property value is not correct
in the given context.

UML base element(s) in the Profile and Stereotype

Constraint stereotyped as <PropertyValue>

Fully Scoped name

ECA::CCA::PropertyValue

February 6, 2002 UML for EDOC - CCA 55

UML for EDOC - CCA

Owned by

ComponentUsage

Extends

None

Properties

value

An expression for the value of the property.

UML Representation

Constraint::body

Related elements

Owner

The component usage being configured with a value.

UML Representation

ModelElement::namespace

Fills

The property being modified.

UML Representation

Constraint:constrainedElement referencing an attribute of <Owner>.

Constraints

• “fills” must relate to a property definition of the ProcessComponent that the owner
uses.

• The type returned by the PropertyValue expression must be compatible with the
type defined by the PropertyDefinition.

56 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

1.2.3.6 ContextualBinding

Semantics

A composition is able to use abstract ProcessComponents in compositions – we call
these abstract compositions. The use of an abstract composition implies that at some
point a concrete component will be bound to that composition. That binding may be
done at runtime or when the composition is used as a component in another
composition.

For example, a composed “Pricing” component may use an abstract component
“PriceFormula”. In our “InternationalSales” composition we may want to say that
“PriceFormula” uses “InternationalPricing”.

Contextual Binding allows the substitution of a more concrete ProcessComponent for a
compatible abstract ProcessComponent when an abstract composed ProcessComponent
is used. So within the composition that uses the abstract component (International
Sales) we say the use of a particular Component (use of PriceFormula) will be bound to
a concrete component (InternationalPricing). These semantics correspond with the
three relations out of ContextualBinding.

Note that other forms of binding may be used, including runtime binding. But these are
out of scope for CCA. Some specializations of CCA may subtype ContextualBinding
and apply selection formula to the binding, as is common in workflow systems.

An abstract composition may also be thought of as a pattern, with contextual binding
being the parameter substitution.

UML base element(s) in the Profile and Stereotype

Binding stereotyped as <ContextualBinding>

Fully Scoped name

ECA::CCA::ContextualBinding

Owned by

Composition

Extends

None

February 6, 2002 UML for EDOC - CCA 57

UML for EDOC - CCA

Properties

None

Related elements

owner

The composition which is using the abstract composed component and wants to bind
a more specific ProcessComponent for an abstract one. The owner of the
ContextualBinding.

UML Representation

ModelElement::namespace

fills

The ComponentUsage which should have the ProcessComponent it uses replaced.
This component usage does not have to be within the same composition as the
contextual binding, it may be anywhere the component usage occurs visible from
the scope of the composition owning the binding.

UML Representation

Binding::client

bindsTo

The concrete component which will be bound to the component usage.

UML Representation

Binding::supplier

Constraints

The ProcessComponent related to by “bindsTo” must be a subtype of the component
used by the component usage related to by “fills”.

1.2.3.7 CommunityProcess

Semantics

Community processes may be thought of as the “top level composition” in a CCA
specification, it is a specification of a composition of ProcessComponents that work
together for some purpose other than specifying another ProcessComponent.

58 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

One kind of CommunityProcess would be a business process, in which case the nested
components represent business partner roles in that process. For example, a community
process could define the usage of a buyer, a seller, a freight forwarder and two banks
for a sale and delivery process.

Note that designs can be done “top down” or as an assembly of existing
ProcessComponents (bottom up). When design is being done top down, it is usually the
CommunityProcess which comes first and then ProcessComponents specified to fill the
roles of that process.

CommunityProcesses are also useful for standards bodies to specify the roles and
interactions of a B2B process.

UML base element(s) in the Profile and Stereotype

Subsystem stereotyped as <<CommunityProcess>> with a Composition

Fully Scoped name

ECA::CCA::CommunityProcess

Owned by

Package

Extends

Composition and Package

Properties

None

Related elements

None

Constraints

None

1.2.4 Document Model

The document model defines the information that can be transferred between and
manipulated by ProcessComponents. It also forms the base for information in entities.

February 6, 2002 UML for EDOC - CCA 59

UML for EDOC - CCA

DataType

Enumeration
Value

name : String

Emumeration

n
+values
n

+enumeration

1+ini tial 1

DataInvariant
expression : String
onCommit : Boolean

DataE lement1

n +constrainedElement

1+constraints
n

Attribute
byValue : B oolean
required : Boolean
many : Boolean
ini tialValue : E xpression

1

n

+type1

n

CompositeData

n

1
+feature

n+owner

1

n

0..1

+subtypesn

+supertype

0..1

ExternalDocument
mimeType : String
specURL : String
externalName : String

Figure 7: Document Metamodel

A data element represents a type of data which may either be primitive DataTypes
or composite. CompositeData has named attributes which reference other types.
Any type may have a DataInvariant expression.

Attributes may be isByValue, which are strongly contained or may simply reference
other data elements provided by some external service. Attributes may also be
marked as required and/or many to indicate cardinality. DataTypes define local
data – these types are defined outside of CCA. ExternalDocument defines a
document defined in an external type system. An enumeration defines a type with
a fixed set of values

1.2.4.1 DataElement

Semantics

DataElement is the abstract supertype of all data types. It defines some kind of
information.

UML base element(s) in the Profile and Stereotype

Classifier (no stereotype)

Fully Scoped name

ECA::DocumentModel::DataElement

60 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

Owned by

Package

Extends

PackageContent

Properties

None

Related elements

constraints

Constraints applied to the values of this data type.

Constraints

None

1.2.4.2 DataType

Semantics

A primitive data type, such as an integer, string, picture, movie…

Primitive data types may have their structure and semantics defined outside of CCA.
The following data types are defined for all specializations of CCA: String, Integer,
Float, Decimal, Boolean.

UML base element(s) in the Profile and Stereotype

DataType (no stereotype)

Fully Scoped name

ECA::DocumentModel::DataType

Owned by

Package

Extends

DataElement

February 6, 2002 UML for EDOC - CCA 61

UML for EDOC - CCA

Properties

None

Related elements

None

Constraints

None

1.2.4.3 Enumeration

Semantics

An enumeration defines a type that may have a fixed set of values.

UML base element(s) in the Profile and Stereotype

Corresponds to User defined enumeration stereotypes of UML DataType.

Fully Scoped name

ECA::Documentmodel::Enumeration

Owned by

Package

Extends

DataElement

Properties

None

Related elements

Values

The set of values the enumeration may have.

62 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

UML Representation

ModelElement::namespace

Initial

The initial, or default, value of the enumeration.

UML Representation

Tagged value

Constraints

None

1.2.4.4 EnumerationValue

Semantics

A possible value of an enumeration.

UML base element(s) in the Profile and Stereotype

The values of User defined enumeration stereotypes of UML DataType.

Fully Scoped name

ECA::DOCUMENTMODEL::EnumerationValue

Owned by

Enumeration

Extends

None

February 6, 2002 UML for EDOC - CCA 63

UML for EDOC - CCA

Properties

name

Related elements

Enumeration

The owning enumeration.

UML Representation

ModelElement:namespace

Constraints

None

1.2.4.5 CompositeData

Semantics

A datatype composed of other types in the form of attributes.

UML base element(s) in the Profile and Stereotype

Class Stereotyped as <<CompositeData>>

Fully Scoped name

ECA::DocumentModel::CompositreData

Owned by

Package

64 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

Extend

DataElements

Properties

None

Related elements

Feature

The attributes which form the composite.

UML Representation

Classifier.feature

Supertype

A type from which this type is specialized. The composite will include all
attributes of all supertypes as attributes of itself.

Subtypes

The types derived from this type.Constraints

UML Representation

Generalization

1.2.4.6 Attribute

Semantics

Defines one “slot” of a composite type that may be filled by a data element of
“type”.

UML base element(s) in the Profile and Stereotype

Attribute (No stereotype)

Fully Scoped name

ECA::DOCUMENTMODEL::Attribute

February 6, 2002 UML for EDOC - CCA 65

UML for EDOC - CCA

Owned by

CompositeData

Extends

None

Properties

isByValue

Indicates that the composite data is stored within the composite as opposed to
referenced by the composite.

UML Representation

Stand-alone Tagged Value to apply to UML Attribute (a Stereotype of Attrbute
is not created to hold this TaggedValue :

required

Indicates that the attribute slot must have a value for the composite to be valid.

UML Representation

StructuralFeature::multiplicity

many

Indicates that there may be multiple occurrences of values. These values are
always ordered.

UML Representation

StructuralFeature::multiplicity

initialValue

An expression returning the initial value of the attribute.

UML Representation

Attribute::initialValue

66 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

Related elements

type

The type of information which the attribute may hold. Type instances may also
be filled by a subtype.

UML Representation

StructuralFeature::type

owner

The composite of which this is an attribute.

UML Representation

ModelElement::namespace

Constraints

None

1.2.4.7 DataInvariant

Semantics

A constraint on the legal values of a data element.

UML base element(s) in the Profile and Stereotype

Constraint

Fully Scoped name

ECA::DOCUMENTMODEL::DataInvarient

Owned by

DataElement

Extends

None

February 6, 2002 UML for EDOC - CCA 67

UML for EDOC - CCA

Properties

Expression

The expression which must return true for the data element to be valid.

UML Representation

Constraint::body

isOnCommit (Default: False)

True indicates that the constraint only applies to a fully formed data element, not
to one under construction.

UML Representation

Tagged Value

Related elements

ConstrainedElement

The data element that will be constrained.

UML Representation

Constraint::constrainedElement

1.2.4.8 ExternalDocument

Semantics

A large, self contained document defined in an external type systems such as XML,
Cobol or Java that may or may not map to the ECA document model.

UML base element(s) in the Profile and Stereotype

DataType Stereotyped as <<ExternalDocument>>

Fully Scoped name

ECA::DOCUMENTMODEL::ExternalDocument

Owned by

Package

68 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

Extends

DataElement

Properties

All properties are tagged values

MimeType

The type of the document specified as a string compatible with the “mime”
declarations.

SpecURL

A reference to an external document definition compatible with the mimiType, such
as a DTD or Schema. If the MimeType does not define a specification form (E.G.
GIF) then this attribute will be blank.

ExternalName

The name of the document within the SpecURL. For example, an element name
within a DTD. If the MimeType does not define a specification form (E.G. GIF) or
the specification form only specifies one document then this attribute will be blank.

Related elements

None

Constraints

None

February 6, 2002 UML for EDOC - CCA 69

UML for EDOC - CCA

1.2.5 Model Management

Model management defines how CCA models are structured and organized. It directly
maps to its UML counterparts and is only included as an ownership anchor for the other
elements.

ProcessComponent

granularity : String = "Program"
isPersistent : Boolean = false
primitiveKind : String = ""
primitiveSpec : String

(from CCA)

DataElement
(from Docum entModel)

Package

Pack ageContent
name : String

n

1

+ownedElements

n

+namespace
1

ElementImport

1

n

+modelElement

1

+elem ent Im port
n

CommunityProcess
(from CCA)

Composition
(from CCA)

Protocol
(from CCA)

Figure 8: Model Management Metamodel

A package defines a logical hierarchy of reusable model elements. Elements that
may be defined in a package are PackageContent and may be ProcessComponents,
Protocols, DataElements, CommunityProcesses and other packages. A
ImportedElement defines a “shortcut” visibility of a package content in a package
that is not its owner. Shortcuts are useful to organize reusable elements from
different perspectives.

Note that ProcessComponents are also packages, allowing elements which are
specific to that component to be defined within the scope of that component.

70 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

1.2.5.1 Package

Semantics

Defines a structural container for “top level” model elements that may be referenced by
name for other model elements.

UML base element(s) in the Profile and Stereotype

Package

Fully Scoped name

ECA::ModelManagement::Package

Owned by

Package or model (global scope)

Extends

PackageContent

Properties

None

Related elements

OwnedElements

The model elements within the package and visible from outside of the package.

UML Representation

Namespace::OwnedElement

Constraints

None

February 6, 2002 UML for EDOC - CCA 71

UML for EDOC - CCA

1.2.5.2 PackageContent

Semantics

An abstract capability that represents an element that may be placed in a package and
thus referenced by name from any other element.

UML base element(s) in the Profile and Stereotype

ModelElement

Fully Scoped name

ECA::ModelManagement::

Owned by

Package

Extends

None

Properties

name

UML Representation

ModelElement::name

Related elements

namespace

UML Representation

ModelElement::namespace

Constraints

72 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

1.2.5.3 ElementImport

Semantics

Defines an “Alias” for one element within another package.

UML base element(s) in the Profile and Stereotype

ElementImport (No Stereotype)

Fully Scoped name

ECA::ModelManagement::ElementImport

Owned by

Package

Extends

PackageContent

Properties

None

Related elements

ModelElement

The element to be imported.

Constraints

None

1.3 CCA Notation
CCA uses UML notation with a few extensions and conventions to make diagrams
more readable and compact for CCA aware tools. The UML mapping shown how CCA
is expressed in the UML Metamodel which has standard notation. Unless stated
otherwise, all other UML elements use the base UML 1.4 notation. The following are
additions this base UML 1.4 notation.

February 6, 2002 UML for EDOC - CCA 73

UML for EDOC - CCA

1.3.1 CCA Specification Notation

A ProcessComponent is based on the notation for a subsystem with extensions for ports
and properties. Consider the following diagram template for ProcessComponent
notation.

Component

Property Type

Responder Initiator

Value

t

Receives Sends

Figure 9: ProcessComponent specification notation

Component t

Property Type Value

SendsReceives

 Initiator

SendsX
ReceivesY

ReceivesZ

 Responder

ReceivesA
SendsB

SendsC

Figure 10: ProcessComponent specification notation (expanded ProtocolPorts)

• A ProcessComponent represents its external contract as a subsystems with the
following addition:

• The ProcessComponent type may be represented as an icon in the component name
compartment. “t” above.

• Ports are represented as going through the boundary of the box. The port is itself a
smaller rectangle with the name of the port inside the rectangle.. In the above,
“Receives”, “Sends”, “Responder” and “Initiator” are all ports. The type of the port
is not represented in the diagram.

• Flow ports are represented as an arrow going through a box. Flow ports that send
have the arrow pointing out of the box while flow ports that receive (Receives) have
an arrow pointing into the box. A sender has the background and text color
inverted.

• Protocol ports and Operation ports are boxes extending out of the component.
Protocol ports representing an initiator have the colors of their background and text

74 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

reversed. In the above, “Initiator” is a protocol port of an initiator and “Responder”
is a protocol port that is not an initiator. ProtocolPorts may show nested, the Ports of
the used Protocol.

• Multiports are shown as a shaded box grouping the set of ports it contains.

• Property Definitions are in a separate compartment listing the property name, type
and default value (if any). The name, type and value are separated by lines. Each
property is on a separate line.

1.3.2 Composite Component Notation

A composite is shown as a ProcessComponent with the composition in the center. The
composition is a new notation but may also be rendered with a UML collaboration.

Component

Responder Initiator

t

Receives

Property Type Value

Sends

 Figure 11: Composite Component notation (without internal ComponentUsages)

February 6, 2002 UML for EDOC - CCA 75

UML for EDOC - CCA

Component t

Initiator

Sends

Responder

Receives

Usage 1 t

Property Type Value

SendsReceives

Usage 2 t

Property Type Value

Responder Initiator

Property Type Value

 Figure 12: Composite Component notation

• The ports on the composite component being defined are shown in the same way as
they are on a ProcessComponent, but in this case represent the port connector.

• A component usage is shown as a smaller version of a ProcessComponent inside
the composite component. Note Usage (1..2) are component usages.

• Port connectos are shown in the same fashion as ports, on component usages. The
ports on Usage 1..2 are all port usages.

• Connectors are shown as lines between port usages or port proxies. All the lines in
the above are connectors.

• Property values may be shown on component usages (in the same way as the
property definition), or may be suppressed.

1.3.3 Community Process Notation

A community process is shown in the same way as a composite component with the
exception that a community process has no external ports.

76 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

BuySellProcess

Buyer t

Buy

Seller t

Sell

Figure 13: CommunityProcess notation

In the above example “BuySellProcess” is a community process with component usage
for “Buyer” and “Seller” which are connected via their “buy” and “sell” ports,
respectively.

1.4 UML Profile
The CCA profile specifies how CCA concepts relate to and are represented in standard
UML using stereotypes, tagged values and constraints. This allows off-the-shelf UML
tools to represent CCA and interchange CCA models.

The CCA profile is organized as a single package which corresponds to the ECA::CCA
package in the logical model and the CCA <<profile>> package. In addition there is a
package for the document model which is used by CCA.

1.4.1 Tables mapping concepts to profile elements

The following tables provide a summary of the CCA elements as stereotypes and tagged
values. These stereotypes and tagged values may be used in standard UML models, and
represented in standard UML diagrams (See 1.5“Diagramming CCA” for an example).

Metamodel
element name

Stereotype name UML
base Class

Parent Tags Constraints

ProcessComponent ProcessComponent Classifier N/A granularity
isPersistent
primitiveKind
primitiveSpec

Port Port Class N/A isSynchronous
isTransactional
direction
postCondition

FlowPort FlowPort Class Port typeProperty

February 6, 2002 UML for EDOC - CCA 77

UML for EDOC - CCA

Metamodel Stereotype name UML Parent Tags Constraints
element name base Class
ProtocolPort ProtocolPort Class Port uses
MultiPort MultiPort Class Port
OperationPort N/A Operation Port
Protocol Protocol Class N/A
Interface N/A Classifier N/A
InitiatingRole InitiatingRole Class N/A
RespondingRole InitiatingRole Class N/A
PropertyDefinition PropertyDefinition Attribute N/A
«enumeration»
DirectionKind

DirectionKind Enumeration

«enumeration»
GranularityKind

GranularityKind Enumeration N/A

Direction (value) initiates Association N/A
Direction (value) responds Association N/A

Table 1: Stereotypes for Structural Specification (UML notation: Class Diagram)

primitiveKind primitiveKind String 0..1
primitiveSpec primitiveSpec String 0..1
isPersistent isPersistent Boolean 1 default=false
isSynchronous isSynchronous

Port
 and
specializations:
 ProtocolPort or
 FlowPort or
 MultiPort or
 OperationPort

Boolean 1 default=false

isTransactional isTransactional Boolean 1 default=false
direction direction «enumeration»

DirectionKind
1

postCondition postCondition «enumeration»
Status

0..1

typeProperty typeProperty FlowPort Attribute 0..1 Reference a
PropertyDefinition of
the owner
ProcessComponent.

Metamodel Tag Stereotype Type Mul Dgranularity granularity ProcessComponent «enumeration»
GranularityKind

0..1
attribute name

tiplicity escription

Table 2: TaggedValues for Structural Specification

Pseudostate Success FinalState N/A
Pseudostate Failure FinalState N/A
«enumeration»
Status

Status Enumeration

Metamodel Stereotype nam UML Base Class Pare T CChoreography Choreography StateMachine or

N/A

PortActivity PortActivity CompositeState N/A represents
Transition N/A (UML element) Transition N/A
Pseudostate N/A (UML element) or

Success or Failure
Pseudostate N/A

element name
e nt ags onstraints

78 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

Table 3: Stereotypes for Choreography (UML notation: Statechart Diagram)

Metamodel
attribute
name

Tag Stereotype Type Multi
plicity

Description

represents represents PortActivity Class,
constrained to
«ProtocolPort» or
«FlowPort» or
«MultiPort» or
«OperationPort»

1

Table 4: TaggedValues for Choreography

Metamodel element
name

Stereotype name UML Base Class Parent Tags Constr
aints

Composition Composition Collaboration N/A
ComponentUsage ComponentUsage ClassifierRole N/A
PortConnector PortConnector ClassifierRole N/A
Connection Connection AssociationRole N/A
PropertyValue PropertyValue Constraint N/A
ContextualBinding ContextualBinding Binding N/A
CommunityProcess CommunityProcess Subsystem N/A

Table 5: Stereotypes for Composition (UML notation: Collaboration Diagram at specification level)

Metamodel
attribute
name

Tag Stereotype Type Multi
plicity

Description

represents represents PortConnector Class,
constrained to
«ProtocolPort» or
«FlowPort» or
«MultiPort»

1

Table 6: TaggedValues for Composition

Metamodel
element name

Stereotype name UML Base Class Parent Tags Constraints

CompositeData CompositeData Class N/A
ExternalDocument ExternalDocument DataType N/A
DataInvariant DataInvariant Constraint N/A
DataType N/A (UML) DataType N/A
Enumeration N/A (UML) Enumeration N/A
Attribute N/A (UML) Attribute N/A

Table 7: Stereotypes for DocumentModel (UML notation: Class Diagram)

Metamodel
attribute
name

Tag Stereotype Type Multi
plicit
y

Description

isOnCommit isOnCommit DataInvariant Boolean 1
isByValue isByValue N/A 1 Apply to Attribute of

February 6, 2002 UML for EDOC - CCA 79

UML for EDOC - CCA

Metamodel
attribute
name

Tag Stereotype Type Multi
plicit
y

Description

«CompositeData»
mimeType mimeType ExternalDocument String 0..1
specURL specURL String 0..1
externalName externalName String 0..1

Table 8: TaggedValues for DocumentModel

1.4.2 UML Profile - Introduction

The UML Profile for CCA accesses a number of UML Packages. The CCA
<<profile>> extends these packages with CCA stereotypes & semantics.

Core
(from Foundation)

<<metamodel>>

CCA
(from ECA)

<<profile>>

State_Machines
(from Behavioral_Elements)

<<metamodel>>
Collaborations

(from Behavioral_Elements)

<<metamodel>>

Data_Types
(from Foundation)

<<metamodel>>

Model_Management
(from Logical View)

<<metamodel>>

<<access>> <<access>> <<access>>
<<access>> <<access>>

Figure 14: UML«metamodel» and CCA «profile»Packages

Each CCA stereotype extends a specific UML model element as shown below.

80 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

Subsystem
(from Model_Management)
+ isInstantiable : Boolean

ProcessComponent
<<taggedValue>> + granularity : String [0..1]
<<taggedValue>> + isPersistent : Boolean = false
<<taggedValue>> + primitiveKind : String
<<taggedValue>> + primitiveSpec : String

<<stereotype>>
PropertyDefinition

<<taggedValue>> + isLocked : Boolean

<<stereotype>>

Attribute
(from Core)

<<metaclass>>

DirectionKind
+ Initiates
+ Responds

<<Enumeration>>

MultiPort
<<stereotype>>

Port
<<taggedValue>> + isSynchronous : Boolean = false
<<taggedValue>> + isTransactional : Boolean = false
<<taggedValue>> + direction : DirectionKind = Initiates
<<taggedValue>> + postCondition [0..1] : Status

<<stereotype>>

FlowPort
<<stereotype>>

Class
(from Core)

<<metaclass>>

ProtocolPort
<<stereotype>>

Protocol
<<taggedValue>> + initiatingRoleName : String
<<taggedValue>> + respondingRoleName : String
+ /port [0..n] : Class

<<stereotype>>

Operation
(from Core)

<<metaclass>>

InitiatingRole
<<stereotype>>

RespondingRole
<<stereotype>>

Signal
(from Common_Behavior)

<<metaclass>>

<<stereotype>>

<<stereotype>>

Classifier
(from Core)

<<metaclass>>

<<stereotype>>

Parameter
(from Core)

<<metaclass>>

1

n

+type1

+typedParameter
n

typeProperty [0..1]
<<taggedValue>>

<<stereotype>><<stereotype>><<stereotype>>

uses [1]
<<taggedValue>>

<<stereotype>>

PortActivity
<<taggedValue>> + represents [1] : Port

<<stereotype>>
Choreography

<<stereotype>>
Pseudostate

(from State_Machines)

<<metaclass>>
FinalState

(from State_Machines)

<<metaclass>>

Status
+ Success
+ BusinessFailure
+ TimeoutFailure
+ TechnicalFailure
+ AnyFailure
+ AnyStatus

<<enumeration>>
CompositeState

(from State_Machines)

<<metaclass>>
Transition

(from State_Machines)

<<metaclass>>
StateMachine

(from State_Machines)

<<metaclass>>
n0..1

+transitions

n

+stateMachine

0..1

<<stereotype>> <<stereotype>>

ClassifierRole
(from Collaborations)

<<metaclass>>

ComponentUsage
<<stereotype>>

PortConnector
<<stereotype>>

Connection
<<stereotype>>

ContextualBinding
<<stereotype>>

AssociationRole
(from Collaborations)

<<metaclass>>
Binding

(from Core)

<<metaclass>>

PropertyValue
<<stereotype>>

Constraint
(from Core)

<<metaclass>>
Collaboration

(from Collaborations)

<<metaclass>>

Composition
<<stereotype>>

CommunityProcess
<<stereotype>>

Class
(from Core)

<<metaclass>>

<<stereotype>> <<stereotype>> <<stereotype>>
<<stereotype>>

<<stereotype>>
<<stereotype>> represents [1..1]

<<taggedValue>>

CompositeData
<<stereotype>>

Class
(from Core)

<<metaclass>>

DataInvariant
+ isOnCommit : Boolean = false

<<stereotype>>

Constraint
(from Core)

<<metaclass>>

ExternalDocument
<<taggedValue>> + mimeType : String
<<taggedValue>> + specURL : String
<<taggedValue>> + externalName : String

<<stereotype>>

<<stereotype>>

<<stereotype>><<stereotype>>

Figure 15: Stereotypes in the UML Profile for CCA

February 6, 2002 UML for EDOC - CCA 81

UML for EDOC - CCA

1.4.3 Stereotypes for Structural Specification

ProcessComponent
<<stereotype>>

<<taggedValue>> + granularity : String [0..1]
<<taggedValue>> + isPersistent : Boolean = false
<<taggedValue>> + primitiveKind : String
<<taggedValue>> + primitiveSpec : String

PropertyDefinition
<<stereotype>>

<<taggedValue>> + isLocked : Boolean

Attribute
(from Core)

<<metaclass>>

DirectionKind
<<Enumeration>>

+ Initiates
+ Responds

MultiPort
<<stereotype>>

Port
<<stereotype>>

<<taggedValue>> + isSynchronous : Boolean = false
<<taggedValue>> + isTransactional : Boolean = false
<<taggedValue>> + direction : DirectionKind = Initiates
<<taggedValue>> + postCondition [0..1] : Status

FlowPort
<<stereotype>>

Class
(from Core)

<<metaclass>>

<<stereotype>> <<stereotype>>

ProtocolPort
<<stereotype>>

<<stereotype>>

Protocol
<<stereotype>>

<<taggedValue>> + initiatingRoleName : String
<<taggedValue>> + respondingRoleName : String
+ /port [0..n] : Class

uses [1]
<<taggedValue>>

<<stereotype>>

Operation
(from Core)

<<metaclass>>

InitiatingRole
<<stereotype>>

RespondingRole
<<stereotype>>

<<stereotype>>

typeProperty [0..1]
<<taggedValue>>

<<stereotype>>

Signal
(from Common_Behavior)

<<metaclass>>
Classifier

(from Core)

<<metaclass>>
Parameter
(from Core)

<<metaclass>>

1

n

+type1

+typedParameter
n

<<stereotype>>

Figure 16: Stereotypes for Structural Specification

Applicable Subset

Classifier, Class, Attribute

1.4.3.1 «ProcessComponent»

Inheritance
Foundation::Core::Classifier
 «ProcessComponent»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

82 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

Relationships1

Relationship Role(s)

Ports owner

Generalization supertype subtypes {only with
«ProcessComponent»}

Properties component

Uses owner

ComponentUsages owner

Bindings owner

Bindings bindsTo

Connections _connections

Nodes _nodes

PortUsages extent

Is_A_Choreography is_specialization

Is_A_Composition is_ specialization

PackageElements owner ownerElements

ImportElement modelElement elementImport

Correspondence of metamodel attributes with UML attributes

Metamode
l attribute
name

UML attribute
name

UML attribute
owner

Description

name name ModelElement

Tagged Values

Tagged Value name Type Multiplicity Description

granularity String 0..1

primitiveKind String 0..1

primitiveSpec String 0..1

isPersistent Boolean 1 default=false

1 The “Relationships” header references the relationships in which the Model Element participates, and the name of
the role in the relationship. The section "Relationships", see 1.4.8 below, includes the specifications for these
relationships, and their mapping between metamodel and UML representation.

February 6, 2002 UML for EDOC - CCA 83

UML for EDOC - CCA

Constraints expressed generically

The set of all the «Port» of a «ProcessComponent» is the set of «Port» or its
specializations, that are aggregated in the «ProcessComponent».

The supertype of a «ProcessComponent» must be a «ProcessComponent».

Formal Constraints Expressed in Terms of the UML Metamodel
context ProcessComponent

inv:
 supertype->isEmpty() or

supertype.isStereoKinded("ProcessComponent")

def:
 -- the Ports in the ProcessComponent :
 -- composed in the ProcessComponent

 let ports : Set(Class) =
 (association->select(anAssociationEnd : AssociationEnd |
 anAssociationEnd.aggregationKind = ak_composite)
 ->association->connection – association)
 ->participant
 ->select(aClassifier : Classifier|
 anElement.isStereoKinded(«Port»))

Diagram Notation

N/A

1.4.3.2 «Port»

Inheritance
Foundation::Core::Class
 «Port»

Instantiation in a model

Abstract

Semantics

Corresponds to the element of same name in the metamodel.

The «Port» stereotype has been introduced for clarity and brevity, defining in a
common ancestor, the taggedValues corresponding to attributes of Port in the
metamodel, and reused along the stereotypes specialization of «Port» : «FlowPort»,
«ProtocolPort», «MultiPort» and «OperationPort».

84 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

Relationships

Relationship Role(s)

Ports ports
Represents represents

Correspondence of metamodel attributes with UML attributes

Metamodel attribute
name

UML attribute
name

UML attribute
owner

Descriptio
n

name name ModelElement

Tagged Values

Tagged Value
name

Type Multiplicity Description

isSynchronous Boolean 1 default=false

isTransactional Boolean 1 default=false

direction DirectionKind 1

postCondition «enumeration» Status 0..1

Constraints expressed generically

A «Port» must be aggregated into a «Protocol» or a «ProcessComponent», or a
«MultiPort».

Note that the metamodel Interface corresponds in the UML Profile to a UML Classifier
which may or may not by a UML Interface, and that the metamodel OperationPort
corresponds to a UML Operation. However, UML Interface is the recommended model
element to use. Although in the metamodel both Interface and OperationPort may
contain other Port, in the UML Profile these, and their relationships are directly
supported by UML. Neither Interface or OperationPort appear in the constraint below,
as candidate owners for «Port». This allows arbitrary UML classifiers (of any kind) to
be used with CCA. Only the operations of these classifiers will correspond to CCA
elements.

The relationship between the Port and the PortOwner shall have the stereotype
<<initiates>> or the stereotype <<responds>> which shall have the same value as
“direction”.

Formal Constraints Expressed in Terms of the UML Metamodel
context Port

inv:
 aggregatedOwner->notEmpty()

inv:
 ownerAggregation.isStereoKinded("initiates") implies
 direction = "Initiates"

February 6, 2002 UML for EDOC - CCA 85

UML for EDOC - CCA

inv:
 ownerAggregation.isStereoKinded("responds") implies
 direction = "Responds"

def:
 -- the owner of the Port
 let aggregatedOwner : Class = ownerAggregation.participant

def:
 let ownerAggregation : Class =
 (association->association->connection – association)->
 select(anAssociationEnd : AssociationEnd |
 anAssociationEnd.aggregationKind = ak_composite)
 ->select(anAssocRole : AssociationRole|
 anAssocRole->participant.isStereoKinded(«Protocol») or
 anAssocRole->participant.isStereoKinded(

«ProcessComponent») or
 anAssocRole->participant..isStereoKinded(

«MultiPort»))
 ->any(true)

 Diagram Notation

N/A

1.4.3.3 «FlowPort»

Inheritance
Foundation::Core::Class
 ECA::CCA::ComponentSpecification::«Port»
 «FlowPort»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)

FlowType _type

TypeProperty constrains

86 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

Tagged Values

Tagged
Value name

Type Multiplicit
y

Description

typeProperty Attribute 0..1 Refer to a «PropertyDefinition» of the owner
«ProcessComponent». When the
«ProcessComponent» is used as a
«ComponentUsage», the value held by the
«PropertyValue» in the «ComponentUsage»
will be interpreted as the actual type of the
«FlowPort», for its specific «PortUsage» in
the «ComponentUsage».

Constraints expressed generically

The «FlowPort» must reference as its type a DataType, Enumeration, «CompositeData»
or «ExternalDocument» or their specializations.

The typeProperty of «FlowPort», if is specified, it must reference an Attribute
stereotyped as «PropertyDefinition», owned by the same «ProcessComponent» that
owns the «FlowPort». If the initialValue of the «ProperyDefinition» is set, then the
value must be the name of a DataElement, Enumeration, «CompositeData» or
«ExternalDocument».

Formal Constraints Expressed in Terms of the UML Metamodel
context FlowPort

inv:
 type->notEmpty()

inv:
 typeProperty->isEmpty() or (
 typeProperty.owner = this.aggregatedOwner)

def:
 let type : Classifier =
 (association->association->connection - association)-

>participant
 ->select(aClassifier : Classifier|
 anElement.isOclKindOf(DataElement) or
 anElement.isOclKindOf(Enumeration) or
 anElement.isStereoKinded(«CompositeData») or
 anElement.isStereoKinded(«ExternalDocument»))

Diagram Notation

N/A

February 6, 2002 UML for EDOC - CCA 87

UML for EDOC - CCA

1.4.3.4 «ProtocolPort»

Inheritance
Foundation::Core::Class
 ECA::CCA::ComponentSpecification::«Port»
 «ProtocolPort»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)

ProtocolType _uses

Tagged Values

N/A

Constraints expressed generically

A «ProtocolPort» must reference a «Protocol», or its specializations, through a
Generalization Relationship, with the «Protocol» as the parent.

Formal Constraints Expressed in Terms of the UML Metamodel
context ProtocolPort
inv:
 generalization->notEmpty() and
 generalization.parent->select(aGeneralizable :

GeneralizableElement |
 aGeneralizable.isStereoKinded("Protocol"))
 ->notEmpty()

Diagram Notation

N/A

88 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

1.4.3.5 «MultiPort»

Inheritance
Foundation::Core::Class
 ECA::CCA::ComponentSpecification::«Port»
 «MultiPort»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)

Ports owner

Tagged Values

N/A

Constraints expressed generically

All the «Port» aggregated by the «MultiPort», must be «FlowPort» or its
specializations.

Formal Constraints Expressed in Terms of the UML Metamodel

context MultiPort

inv:
 ports->forAll(aClass : Class |

aClass.isStereoKinded("FlowPort"))

def:
 let ports : Set(Class) =
 (association->select(anAssociationEnd : AssociationEnd |
 anAssociationEnd.aggregationKind = ak_composite)
 ->association->connection – association)
 ->participant
 ->select(aClassifier : Classifier|
 anElement.isStereoKinded(«Port»))

February 6, 2002 UML for EDOC - CCA 89

UML for EDOC - CCA

Diagram Notation

N/A

1.4.3.6 UML Operation represents OperationPort

Semantics

The concept of OperationPort in the metamodel, is represented by a standard UML
operation.

The OperationPort is constrained to contain only FlowPorts.

The signature, of the UML Operation representing an OperationPort, is derived from
the type of the one and only FlowPort of the OperationPort, with direction="initiates".
For each Attribute of the FlowPort, the UML Operation will have an input Parameter
with type equal to the type of the Attribute in the FlowPort.

For each ownedFlowPort with direction="responds" and postCondition="Success",
then the UML Operation will have return Parameters with same type as the type of the
FlowPort.

All other FlowPort in the OperationPort with direction="responds", correspond to
raisedException Signal of the UML Operation. The structure of the Signal is derived
from the FlowPort type : the Signal will have Attribute with same name and type of the
Attribute of the type of the FlowPort.

Relationships

 N/A

Tagged Values

N/A

Constraints expressed generically

.N/A

Formal Constraints Expressed in Terms of the UML Metamodel

N/A

Diagram Notation

N/A

90 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

1.4.3.7 «Protocol»

Inheritance
Foundation::Core::Class
 «Protocol»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)
Ports owner
ProtocolType _uses
Generalization supertype subtypes (only with

«Protocol»)
Node nodes
Connection connections
PackageElements owner ownedElements
Is_a_Choreography is_specialization
ImportElement modelElement elementImport
Initiator _initiator
Responder _responder

Correspondence of metamodel attributes with UML attributes

Metamodel attribute
name

UML attribute
name

UML attribute
owner

Descriptio
n

name name ModelElement

Tagged Values

N/A

Constraints expressed generically

The supertype of a «Protocol» must be a «Protocol».

The set of all the «Port»s of a «Protocol» is the set of «Port»s or its specializations, that
are aggregated in the «Protocol».

A «Protocol» may have an Aggregation with at most one «InitiatingRole».

A «Protocol» may have an Aggregation with at most one «RespondingRole».

February 6, 2002 UML for EDOC - CCA 91

UML for EDOC - CCA

Formal Constraints Expressed in Terms of the UML Metamodel
context Protocol

inv: initiatingRole->size() < 2

inv: repondingRole->size() < 2

inv:
 supertype->isEmpty() or

supertype.isStereoKinded("Protocol")

def:
 -- the Ports in the Protocol : Association composed in

the Protocol

 let ports : Set(Class) =
 (association->select(anAssociationEnd : AssociationEnd |
 anAssociationEnd.aggregationKind = ak_composite)
 ->association->connection – association)
 ->participant
 ->select(aClassifier : Classifier|
 anElement.isStereoKinded(«Port»))

def:
 let initiatingRole : Class = (association->select(

anAssociationEnd : AssociationEnd |
 anAssociationEnd.aggregationKind = ak_composite)
 ->association->connection – association)
 ->participant
 ->select(aClassifier : Classifier|
 anElement.isStereoKinded(«InitiatingRole»))

def:
 let repondingRole: Class = (association->select(

anAssociationEnd : AssociationEnd |
 anAssociationEnd.aggregationKind = ak_composite)
 ->association->connection – association)
 ->participant
 ->select(aClassifier : Classifier|
 anElement.isStereoKinded(«RespondingRole»))

Diagram Notation

N/A

1.4.3.8 «InitiatingRole»

Inheritance

Foundation::Core::Class

Instantiation in a model

Concrete

92 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

Semantics

Relationships

Corresponds to the element of same name in the metamodel.

Relationship

Initiator _initiator
Role(s)

Correspondence of metamodel attributes with UML attributes

Metamodel attribute
name

UML attribute
name

UML attribute
owner

Descriptio
n

name name ModelElement

Tagged Values

N/A

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel

context InitiatingRole

Diagram Notation

N/A

1.4.3.9 «RespondingRole»

Inheritance
Foundation::Core::Class
 «RespondingRole»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

February 6, 2002 UML for EDOC - CCA 93

UML for EDOC - CCA

Relationships

Relationship Role(s)

Responder _responder

Correspondence of metamodel attributes with UML attributes

Metamodel attribute
name

UML attribute
name

UML attribute
owner

Descriptio
n

name name ModelElement

Tagged Values

N/A

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel

context RespondingRole

Diagram Notation

N/A

1.4.3.10 UML Classifier represents Interface

Inheritance

N/A

Instantiation in a model

Concrete subtypes of classifier.

Semantics

The metamodel element Interface corresponds to the UML Classifier.

Foundation::Core::Classifier

A metamodel Interface can only contain metamodel OperationPort, and OperationPort
can only contain constrained FlowPort.

94 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

An Classifier Classifier contains UML Operation features, corresponding to the
OperationPort of the metamodel Interface.

The metamodel FlowPort, owned by OperationPort, are mapped into the UML
Parameter of the UML Operation. Parameter include the return type, and alternate
exceptional result types.

The metamodel FlowPort of the OperationPort must comply with constraints, ensuring
that the OperationPort FlowPort can be mapped to the Parameter of the UML
Operation.

The metamodel Interface can only have OperationPort and FlowPort, because only
these can be mapped to UML Operation. The OperationPort and FlowPort of Interface,
can only have direction="responds".

The «InitiatingRole», initiator of the Classifier, is the role that invokes operations in the
Classifier. The «RespondingRole», responder of the Classifier, is the role that
implements the operations in the Classifier.

Relationships

Relationship Role(s)
ProtocolType _uses
Generalization supertype subtypes (only with

Classifier)
Node nodes
Connection connections
PackageElements owner ownedElements
Is_a_Choreography is_specialization
Initiator _initiator
Responder _responder

Correspondence of metamodel attributes with UML attributes

Metamodel attribute
name

UML attribute
name

UML attribute
owner

Descriptio
n

name name ModelElement

Tagged Values

N/A

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel

N/A

February 6, 2002 UML for EDOC - CCA 95

UML for EDOC - CCA

Diagram Notation

N/A

1.4.3.11 «PropertyDefinition»

Inheritance
Foundation::Core::Attribute
 «PropertyDefinition»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)
Properties properties
PropertyType type
TypeProperty typeProperty
ValueFor fills

Correspondence of metamodel attributes with UML attributes

Metamodel attribute
name

UML attribute
name

UML attribute
owner

Descriptio
n

name name ModelElement
initial initialValue Attribute
isLocked changeability StructuralFeature

Tagged Values

N/A

Constraints expressed generically

The owner of an Attribute stereotyped «PropertyDefinition» must be stereotyped as
«ProcessComponent» or its specializations.

The type of an Attribute stereotyped «PropertyDefinition» must be set, and be a
DataType, or an Enumeration, or a Class stereotyped as «CompositeData» or its
specializations.

96 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

If the «PropertyDefinition» is the typeProperty of a «FlowPort», owned by the same
«ProcessComponent» that owns the «PropertyDefinition», then if the initialValue of the
«ProperyDefinition» is set, then the value must be the name of a DataElement,
Enumeration, «CompositeData» or «ExternalDocument».

Formal Constraints Expressed in Terms of the UML Metamodel
context PropertyDefinition

inv:
 owner->notEmpty() and
 owner.isStereoKinded("ProcessComponent")

inv:
 type->notEmpty() and (
 type.oclIsTypeOf(DataType) or
 type.oclIsTypeOf(Enumeration) or
 type.isStereoKinded("CompositeData"))

-- ojo constrain initialValue when typeProperty of a

FlowPort

Diagram Notation

N/A

1.4.3.12 «enumeration» DirectionKind

Instantiation in a model

Concrete

Semantics

Corresponds to the enumeration named "DirectionType" in the metamodel.

The DirectionKind enumeration in the metamodel is a UML Enumeration.

Enumeration Literals

Corresponding to the enumeration literals of same name in the metamodel.

• Initiates

• Responds

1.4.3.13 «enumeration» GranularityKind

Instantiation in a model

Concrete

February 6, 2002 UML for EDOC - CCA 97

UML for EDOC - CCA

Semantics

Corresponds to the enumeration named “GranularityKind” in the Meta-model, used by
the metaatribute named "granularity", of ProcessComponent.

The set of candidate values for "granularity" in the metamodel, has been formalized in
the UML Profile as an Enumeration named "GranularityKind".

Specializations of CCA may define specializations of GranularityKind with additional
EnumerationLiterals..

Enumeration Literals

Corresponding to the enumeration literals of same name and semantics, in the
metamodel.

• Program

• Owned

• Shared

1.4.4 Stereotypes for Choreography

PortActivity
<<stereotype>>

<<taggedValue>> + represents [1] : Port

Choreography
<<stereotype>>

Pseudostate
(from State_Machines)

<<metaclass>>

FinalState
(from State_Machines)

<<metaclass>>

Transition
(from State_Machines)

<<metaclass>>
StateMachine

(from State_Machines)

<<metaclass>> n0..1

+transitions
n

+stateMachine

0..1

<<stereotype>>

Status
<<enumeration>>

+ Success
+ BusinessFailure
+ TimeoutFailure
+ TechnicalFailure
+ AnyFailure
+ AnyStatus

CompositeState
(from State_Machines)

<<metaclass>>

<<stereotype>>

Figure 17: Stereotypes for Choreography

Applicable Subset

StateMachine, CompositeState, Transition, Pseudostate, FinalState

98 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

1.4.4.1 «Choreography»

Inheritance
Behavioral_Elements::State_Machines::StateMachine
 «Choreography»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)
Is_a_Choreography is_generalization
Nodes _node
Connections _connections

Tagged Values

N/A

Constraints expressed generically

The context of a StateMachine stereotyped as «Choreography» will be a Classifier
stereotyped as «ProcessComponent» or a Class stereotyped as «Protocol» or a
Subsystem stereotyped as <<CommunityProcess>>, or their specializations.

Formal Constraints Expressed in Terms of the UML Metamodel
context Choreography

inv:
 context->notEmpty() and (
 context->isStereoKinded(«ProcessComponent») or
 context->isStereoKinded(«Protocol») or
 context->isStereoKinded(«CommunityProcess»))

Diagram Notation

N/A

February 6, 2002 UML for EDOC - CCA 99

UML for EDOC - CCA

1.4.4.2 «PortActivity»

Inheritance
Behavioral_Elements::State_Machines::CompositeState
 «PortActivity»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

When a PortActivity in the metamodel references as "represents" a FlowPort, then it
corresponds to a «PortActivity» stereotype of CompositeState with no subvertex.

When the PortActivity in the metamodel references as "represents" a MultiPort, then it
corresponds to a «PortActivity» stereotype of CompositeState with subvertexes
«PortActivity» corresponding to the «FlowPort» of the «MultiPort».

When the PortActivity in the metamodel references as "represents" a «ProtocolPort»,
then it corresponds to a «PortActivity» stereotype of CompositeState.

To choreograph the «Port» in the "represents" «ProtocolPort», in the context of the
«PortActivity», then «PortActivity» subvertexes can be nested, corresponding to the
«Port» of the «Protocol» of the "represents" «ProtocolPort».

Relationships

Relationship Role(s)
Nodes nodes
Target target
Source source
PortUsages portsUsed
Represents _represents

Correspondence of metamodel attributes with UML attributes

Metamodel
attribute name

UML
attribute
name

UML attribute
owner

Description

name name ModelElement Initialize equal to the name
of the "“represents”" «Port»

Tagged Values

Tagged Value
name

Type Multiplicit
y

Descriptio
n

represents Class, 1

100 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

Tagged Value Type Multiplicit Descriptio
name y n

constrained to
«Port» or its
specializations

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel
context PortActivity

Diagram Notation

N/A

1.4.4.3 UML Transition

Inheritance

N/A

Instantiation in a model

Concrete

Semantics

The metamodel element Transition corresponds to the UML model element of the same
name.

Behavioral_Elements::State_Machines::Transition

The "preCondition" metaattribute corresponds to a UML Guard whose expression body
will evaluate true under the same conditions as it would the "preCondition"
metaattribute.

Relationships

Relationship Role(s)
Target incoming
Source outgoing
Connections connections

February 6, 2002 UML for EDOC - CCA 101

UML for EDOC - CCA

Tagged Values

N/A

Constraints expressed generically

 N/A

Formal Constraints Expressed in Terms of the UML Metamodel

N/A

Diagram Notation

N/A

1.4.4.4 UML Pseudostate

Inheritance

N/A

Instantiation in a model

Concrete

Semantics

The metamodel element Pseudostate corresponds to the UML model element of the
same name.

Behavioral_Elements::State_Machines:: Pseudostate

CCA Pseudostate mapps to UML Pseudostate except when the CCA-metamodel
attribute "kind" of the Pseudostate has value "Success" or "Failure", that map to
stereotypes of UML FinalState. Please see stereotypes «Success» and «Failure», below.

The semantics of the metamodel element Pseudostate are equivalent to the semantics of
UML Pseudostate with corresponding "kind" values.

Metamodel kind UML kind : Foundation::Data_Types::PseudostateKind

choice pk_choice

fork pk_fork

initial pk_initial

join pk_join

102 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

Relationships

Relationship Role(s)
Nodes nodes
Target target
Source source
PortUsages portsUsed

Tagged Values

N/A

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel

N/A

Diagram Notation

N/A

1.4.4.5 «Success»

Inheritance
Behavioral_Elements::State_Machines::FinalState
 «Success»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)
Nodes nodes
Target target
Source source
PortUsages portsUsed

February 6, 2002 UML for EDOC - CCA 103

UML for EDOC - CCA

Tagged Values

N/A

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel

N/A

Diagram Notation

N/A

1.4.4.6 «Failure»

Inheritance
Behavioral_Elements::State_Machines::FinalState
 «Failure»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)
Nodes nodes
Target target
Source source
PortUsages portsUsed

Tagged Values

N/A

Constraints expressed generically

N/A

104 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

Formal Constraints Expressed in Terms of the UML Metamodel

N/A

Diagram Notation

N/A

1.4.4.7 «enumeration» Status

Instantiation in a model

Concrete

Semantics

Corresponds to the enumeration of same name in the metamodel.

Enumeration Literals

Corresponding to the enumeration literals of the enumeration of same name in the
metamodel,

• Success

• BusinessFailure

• TimeoutFailure

• TechnicalFailure

• AnyFailure

• AnyStatus

February 6, 2002 UML for EDOC - CCA 105

UML for EDOC - CCA

1.4.5 Stereotypes for Composition

ClassifierRole
(from Collaborations)

<<metaclass>>

ComponentUsage
<<stereotype>>

<<stereotype>>

PortConnector
<<stereotype>>

<<stereotype>>

Connection
<<stereotype>>

ContextualBinding
<<stereotype>>

AssociationRole
(from Collaborations)

<<metaclass>>

<<stereotype>>

Binding
(from Core)

<<metaclass>>

<<stereotype>>

PropertyValue
<<stereotype>>

Constraint
(from Core)

<<metaclass>>

<<stereotype>>

Collaboration
(from Collaborations)

<<metaclass>>

Composition
<<stereotype>>

<<stereotype>>

CommunityProcess
<<stereotype>>

Class
(from Core)

<<metaclass>>

represents [1..1]
<<taggedValue>>

Subsystem
(from Model_Management)

<<stereotype>>

Figure 18: Stereotypes for Composition

Applicable Subset

Collaboration, ClassifierRole, AssociationRole, Constraint, Binding.

1.4.5.1 «Composition»

Inheritance
Behavioral_Elements::Collaborations::Collaboration
 «Composition»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)
Is_a_Composition is_generalization
Generalization parent child {only with

106 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

«Composition»}
ComponentIUsages owner
Nodes _nodes
Connections _connections
Bindings owner
PackageElements owner ownerElements
UML Namespace owner of
«PortConnector»

ClassifierRoles

Tagged Values

N/A

Constraints expressed generically

The supertype of a «Composition» must be a «Composition».

Formal Constraints Expressed in Terms of the UML Metamodel
context Composition

inv:
 supertype->isEmpty() or

supertype.isStereoKinded("Composition")

Diagram Notation

N/A

1.4.5.2 «ComponentUsage»

Inheritance

Behavioral_Elements::Collaborations::ClassifierRole

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)
Nodes nodes
ComponentUsages uses
Fills fills

February 6, 2002 UML for EDOC - CCA 107

UML for EDOC - CCA

PortUsages extent
Configuration owner

Correspondence of metamodel attributes with UML attributes

Metamodel attribute
name

UML attribute
name

UML attribute
owner

Descriptio
n

name name ModelElement

Tagged Values

N/A

Constraints expressed generically

 N/A

Formal Constraints Expressed in Terms of the UML Metamodel
context ComponentUsage

Diagram Notation

N/A

1.4.5.3 «PortConnector»

Inheritance
Behavioral_Elements::Collaborations::ClassifierRole
 «PortConnector»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)
PortUsages PortsUsed, extent
Represents _represents
Target target
Source source
Nodes nodes

108 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

Correspondence of metamodel attributes with UML attributes

Metamodel attribute
name

UML attribute
name

UML attribute
owner

Descriptio
n

name name ModelElement

Tagged Values

N/A

Constraints expressed generically

If the «Port» used by the «PortConnector» is a «FlowPort», and the «FlowPort»
specifies a "typeProperty" (a «PropertyDefinition» in the owner «ProcessComponent»),
then the actual type of the «PortConnector» will be a DataType, Enumeration,
«CompositeData» or «ExternalDocument», with the name equal to the value of the
«PropertyValue» of the «ComponentUsage» corresponding to the «PropertyDefinition»
in the used «ProcessComponent».

Formal Constraints Expressed in Terms of the UML Metamodel
context PortConnector

Diagram Notation

N/A

1.4.5.4 «Connection»

Inheritance
Behavioral_Elements::Collaborations::AssociationRole
 «Connection»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of named "Connection" in the metamodel.

If one of the «Connection»s link participants is a «PortConnector» that "uses" a UML
Classifier (corresponding to a metamodel Interface), then the UML Operation that will
be invoked on the Classifier, is identified by a UML Message of a UML Interaction in
the «Composition». The UML Message will have an action attribute initialized with a
CallAction on the UML Operation.

February 6, 2002 UML for EDOC - CCA 109

UML for EDOC - CCA

Relationships

Relationship Role(s)
Connections connections
Source outgoing
Target incoming

Tagged Values

N/A

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel
context Connection

Diagram Notation

N/A

1.4.5.5 «PropertyValue»

Inheritance

Foundation::Core::Constraint

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)
Configuration configuration
ValueFor _fills

Tagged Values

N/A

110 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

Constraints expressed generically

If the «PropertyValue» configures the value of a «PropertyDefinition» that is the
"typeProperty" of a «FlowPort», then the value configured by the «PropertyValue»
must be the name of a DataType, Enumeration, «CompositeData» or
«ExternalDocument».

A «PropertyValue» is an ownedElement of a «Composition» as Namespace.

Formal Constraints Expressed in Terms of the UML Metamodel
context PropertyValue

 inv:
 namespace->notEmpty() and

namespace.isStereoKinded("Composition")

Diagram Notation

N/A

1.4.5.6 «ContextualBinding»

Inheritance
Foundation::Core::Binding
 «ContextualBinding»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

A «ContextualBinding» is an ownedElement of a «Composition».

The "client" of a ContextualBinding is a «ComponentUsage» in the «Composition».

The "supplier" of a ContextualBinding is a «ProcessComponent».

In the «Composition», the «ProcessComponent» will be used as the "uses" for the
«ComponenUsage».

Relationships

N/A

February 6, 2002 UML for EDOC - CCA 111

UML for EDOC - CCA

Tagged Values

N/A

Constraints expressed generically

Formal Constraints Expressed in Terms of the UML Metamodel
context ContextualBinding

Diagram Notation

N/A

1.4.5.7 «CommunityProcess»

Inheritance
ModelManagement::Subsystem
 «CommunityProcess»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

N/A

Tagged Values

N/A

Constraints expressed generically

Formal Constraints Expressed in Terms of the UML Metamodel
context CommunityProcess

Diagram Notation

N/A

112 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

1.4.6 DocumentModel «profile» Package

The metamodel elements named Attribute, DataType and Enumeration correspond to
the UML model elements of the same name and are not stereotyped.

The metaattribute named "initialValue" of the metamodel Attribute, corresponds to the
attribute of same name of UML Attribute.

The metaattribute named "required" and "many" of the metamodel Attribute, are
combined as a UML Multiplicity. The MultiplicityRange, will have the "lower"
attribute value equal to 0, if the corresponding metamodel Attribute has the "required"
meta-attribute equal to false, and greater than 0, if "required" is true. The
MultiplicityRange will have the "upper" attribute value equal to 1, if the corresponding
metamodel Attribute has the "many" meta-attribute equal to false, and and greater than
1, if "many" is true.

The metamodel element named Enumeration has a metaattribute named "initial" and
type EnumerationValue. In the UML Profile, the responsibility of specifying an initial
value, is delegated to the UML Attribute with type equal to the Enumeration. The
initialValue attribute, of type Expression, in UML Attribute will be used to specify the
default initial value of Enumeration.

The metamodel element named Enumeration Value corresponds to the UML model
element named EnumerationLiteral.

The metamodel Attribute and UML Attribute correspond to each other completely, with
the exception of the meta-attribute named "isByValue".

To represent "isByValue", a TaggedDefinition of same name and type Boolean is
defined, to be applied on UML Attribute.

The TaggedDefinition is defined without creating a Stereotype of Attribute.

CompositeData
<<stereotype>>

Class
(from Core)

<<metaclass>>

<<stereotype>>

DataInvariant
<<stereotype>>

+ isOnCommit : Boolean = false

Constraint
(from Core)

<<metaclass>>

<<stereotype>>

ExternalDocument
<<stereotype>>

<<taggedValue>> + mimeType : String
<<taggedValue>> + specURL : String
<<taggedValue>> + externalName : String

<<stereotype>>

Figure 19: Stereotypes for DocumentModel

February 6, 2002 UML for EDOC - CCA 113

UML for EDOC - CCA

1.4.6.1 «CompositeData»

Inheritance
Foundation::Core::Class
 «CompositeData»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

The «isByValue» TaggedDefinition can be applied to UML Attribute feature of
«CompositeData».

Relationships

Relationship Role(s)
Generalization supertype subtypes {only with

«CompositeData»}
PropertyType type
AttributeType type
DataAttribute owner

DataConstraint constrainedElement

FlowType type
PackageContent ownedElements
ImportElement importedElement

Tagged Values

N/A

Constraints expressed generically

The supertype of an «CompositeData» must be a «CompositeData».

The type of Attributes of «CompositeData» will be a DataType, an Enumeration, or a
Class stereotyped as «CompositeData», or a DataType stereotyped
«ExternalDocument».

Formal Constraints Expressed in Terms of the UML Metamodel
context CompositeData

inv:
 supertype->isEmpty() or

supertype.isStereoKinded("CompositeData")

inv:

114 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

 feature->select(aFeature : Feature |
aFeature.isOCLTypeOf(Attribute))

 ->collect(aFeature : Feature | aFeature.oclAsType(
Attribute).type)

 ->forAll(aClassifier : Classifier |
 aClassifier.isOclKindOf(DataType) or
 aClassifier.isOclKindOf(Enumeration) or
 aClassifier.isStereoKinded("CompositeData") or
 aClassifier.isStereoKinded("ExternalDocument"))

Diagram Notation

N/A

1.4.6.2 "isByValue" Tagged Definition

The metamodel Attributes and UML Attributes correspond to each other completely,
with the exception of the meta-attribute named "isByValue".

To represent the metamodel attribute named "isByValue", a Tagged Definition of
named "isByValue" and type Boolean is defined, to be applied on UML Attribute.

The Tagged Definition is defined without creating a Stereotype of Attribute.

Tagged Value
name

Type Multiplicit
y

Description

isByValue Boolea
n

0..1 default =
true

1.4.6.3 «DataInvariant»

Inheritance
Foundation::Core::Constraint
 «DataInvariant»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

February 6, 2002 UML for EDOC - CCA 115

UML for EDOC - CCA

Relationships

Relationship Role(s)

DataConstraint constrains

Correspondence of metamodel attributes with UML attributes

Metamodel attribute
name

UML attribute
name

UML attribute
owner

Descriptio
n

expression body Constraint

Tagged Values

Tagged
Value name

Type Multiplicity Description

isOnCommit Boolea
n

1 default=false

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel
context DataInvariant

Diagram Notation

N/A

1.4.6.4 «ExternalDocument»

Inheritance
Foundation::Core::DataType
 «ExternalDocument»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

116 UML for DOC - CCA February 6, 2002

UML for EDOC - CCA

Relationships

Relationship Role(s)
Generalization supertype subtypes {only with

«ExternalDocument»}
PropertyType type
AttributeType type
DataAttribute owner
DataConstraint constrainedElement
FlowType type
PackageContent ownedElements
ImportElement importedElement

Tagged Values

Tagged
Value name

Type Multiplicity Description

mimeType String 0..1
specURL String 0..1
externalNam
e

String 0..1

Constraints expressed generically

N/AFormal Constraints Expressed in Terms of the UML Metamodel
context ExternalDocument

Diagram Notation

N/A

1.4.7 UML Model_Management Package

There is no «profile» Package in the UML Profile for CCA, corresponding to the
ModelManagement Package of the metamodel.

All the concrete metamodel elements have counterparts in UML, and therefore no
stereotypes are required.

The metamodel elements named Package and ElementImport correspond to the UML
model elements of the same name.

February 6, 2002 UML for EDOC - CCA 117

UML for EDOC - CCA

1.4.8 Relationships

This section specifies the correspondence between associations defined in the CCA Meta-model and associations defined in the
UML Meta-model. The relationship name is the same as that found in the CCA Model diagrams (detail level). This correspondence
is shown in the tables below, with a header for each relationship in the metamodel. This section provides detailed information for
those implementing transformations between UML and MOF CCA tools, it is not required to use or understand CCA.

How to use this section.

Each relationship between two concepts in the metamodel, or their specializations, is represented with a UML relationship(s), and in
some cases as a taggedValue, or by relating through UML Association.

The tables show the Left Hand and Right Hand sides of relationships, with the role names, the actual model elements at the ends of
the relationship, and the specializations or stereotypes of interest, related through the relationship - directly or by inheritance.
Multiple related metamodel elements or stereotypes may appear, at any side of relationships used by multiple elements.

The semantics of each row and column in the table are

• For each relationship in the metamodel, there is one or more tables, each table showing a particular mapping for that
relationship. Each table has two lines – one for the CCA model (MOF) and one for the UML model (UML)

• For each relationship mapping in the metamodel :

• there is one row, labeled MOF, that describes the relationship in the metamodel. Its columns mean :

o "LeftHandSide" in MOF rows, it names the MOF metamodel element that participates or inherits the relationship whose UML
mapping we want to express. It may be the same as "LeftHandSide related", or a subtype of it. There may be multiple names, for
various subtypes of polymorphically related metamodel elements.

o "LeftHandSide related": in MOF rows, it names the actual metamodel element referenced by the relationship. May be the same as
"LeftHandSide", or a supertype of it.

o "LeftHandSide role name": in MOF rows, it names the relationship role on the LeftHandSide.

o "RightHandSide role name": in MOF rows, it names the relationship role on the RightHandSide.

o "RightHandSide related": in MOF rows it names the other actual MOF metamodel element referenced by the relationship. May be
the same as 'RightHandSide", or a supertype of it.

119 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 February 6, 2002

UML for EDOC - CCA

o "RightHandSide": in MOF rows, it names the other metamodel element that participates or inherits the relationship whose UML
mapping we want to express. It may be the same as in "RightHandSide related", or a subtype of it. There may be multiple names, for
various subtypes of polymorphically related metamodel elements.

• row labeled 'UML' defining the corresponding UML Meta-model relationship. There may be additional tables for various UML
mappings, describing alternative representations of the metamodel relationship in UML. The UML columns mean :

o "LeftHandSide": In UML rows, it names the UML stereotype corresponding to the LHS MOF metamodel element. There may be
multiple names, for various stereotypes and specializations.

o "LeftHandSide related": In UML rows, it names the baseClass of the LHS UML stereotype, or the supertype of the
baseClass, that is the actual UML model element referenced by the relationship.

o "LeftHandSide role name": in UML rows, it names the relationship role on the LeftHandSide

o "RightHandSide role name": in UML rows, it names the relationship role on the RightHandSide '.

o "RightHandSide related": In UML rows, it names the baseClass of the RHS UML stereotype, or the supertype of the
baseClass, that is the actual UML model element referenced by the relationship.

o "RightHandSide": In UML rows, it names the UML stereotype corresponding to the RHS MOF metamodel element. There may be
multiple names, for various stereotypes and specializations.

1.4.8.1 AttributeType

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF Attribute Attribute _type type DataElement DataType or
Enumeration or
CompositeData
ExternalDocument

UML «PropertyDefintion» Attribute typedFeature type Classifier DataType or
Enumeration or
«CompositeData»
«ExternalDocument
»

120 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 February 6, 2002

UML for EDOC - CCA

1.4.8.2 Bindings

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF Composition Composition owner bindings ContextualBinding ContextualBinding

UML «Composition » Namespace namespace ownedElement ModelElement «ContextualBinding
»

1.4.8.3 BindsTo

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF ContextualBinding ProcessComponent _bindsTo bindsTo ProcessComponent ProcessComponent

UML «ContextualBinding
»

ModelElement supplierDependency supplier ModelElement «ProcessComponent
»

1.4.8.4 Configuration

MOF or
UML

LeftHandSide LeftHandSide related LeftHandSide role
name

RightHandSide role
name

RightHandSide related RightHandSide

MOF ComponentUsage ComponentUsage owner configuration PropertyValue PropertyValue

UML «ComponentUsage» ModelElement constrainedElement constraint Constraint «PropertyValue»

121 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 February 6, 2002

UML for EDOC - CCA

1.4.8.5 Connections in Choreography

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF Choreography Choreography _choreography connections AbstractTransition Transition

UML «Choreography» StateMachine or stateMachine transitions Transition Transition

1.4.8.6 Connections in Composition

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF Composition Choreography _choreography _connections AbstractTransition Transition

UML «Composition» Collaboration namespace ownedElement AssociationRole «Connection»

1.4.8.7 DataAtribute

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF CompositeData CompositeData owner feature DataElement Attribute

UML «CompositeData» Classifier owner feature Feature Attribute

1.4.8.8 DataConstraint

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF DataInvariant DataInvariant constraints constrainedElement DataElement DataElement
subtypes: DataType
or Enumeration or
CompositeData or
ExternalDocument

122 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 February 6, 2002

UML for EDOC - CCA

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

UML «DataInvariant» Constraint constraint constrainedElement ModelElement DataType or
Enumeration or
«CompositeData» or
«ExternalDocument
»

1.4.8.9 DataGeneralization

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF CompositeData CompositeData supertype subtypes CompositeData CompositeData

UML «CompositeData» GeneralizableElemen
t

generalization.parent specialization. child GeneralizableElement «CompositeData»

1.4.8.10 Fills

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF ContextualBinding ProcessComponent _fills fills ProcessComponent ProcessComponent

UML «ContextualBinding
»

ModelElement clientDeendency fills ModelElement «ProcessComponent
»

123 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 February 6, 2002

UML for EDOC - CCA

1.4.8.11 FlowType

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF FlowPort FlowPort _ type type DataElement DataType or
Enumeration or
CompositeData or
ExternalDocument

UML «FlowPort» ClassifierRole
(indirectly thru
AssociationEnd and
Association)

association.
association.
connection.
participant

association.
association.
connection.
participant

ClassifierRole
(indirectly thru
AssociationEnd and
Association)

DataType or
Enumeration or
«CompositeData» or
«ExternalDocument
»

1.4.8.12 Generalization

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF ProcessComponent Choreography supertype subtypes Choreography ProcessComponent

UML «ProcessComponent
»

GeneralizableElemen
t

generalization.parent specialization. child Generalizable Element «ProcessComponent
»

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF Protocol Choreography supertype subtypes Choreography Protocol

UML «Protocol» GeneralizableElemen
t

generalization.parent specialization. child Generalizable Element «Protocol»

124 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 February 6, 2002

UML for EDOC - CCA

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF CommunityProcess Choreography supertype subtypes Choreography CommunityProcess

UML «CommunityProcess
»

GeneralizableElemen
t

generalization.parent specialization. child Generalizable Element «CommunityProcess
»

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF Interface Choreography supertype subtypes Choreography Interface

UML Classifier GeneralizableElemen
t

generalization.parent specialization. child Generalizable Element Classifier

1.4.8.13 ImportElement

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF ElementImport ElementImport elementImport modelElement PackageContent Package or
DataType or
Enumeration or
CompositeData or
ExternalDocument or
Protocol or Interface
or ProcessComponent
or CommunityProcess

125 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 February 6, 2002

UML for EDOC - CCA

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

UML ElementImport ElementImport elementImport importedElement ModelElement Package or
DataType or
Enumeration or
«CompositeData» or
«Protocol» or
Classifier or
«ProcessComponent»
or
«CommunityProcess»

1.4.8.14 Initiator

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF Protocol or
Interface

Protocol _initiator initiator InitiatingRole InitiatingRole

UML «Protocol» or
Classifier

Classifier association.
association.
connection. participant

association. association.
connection. participant

Classifier «InitiatingRole»

1.4.8.15 Is_a_Choreography

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF ProcessComponent
or Protocol or
Interface

ProcessComponent is specialization is generalization Choreography Choreography

UML «ProcessComponent
» or «Protocol» or
Classifier

ModelElement context behavior StateMachine «Choreography»

126 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 February 6, 2002

UML for EDOC - CCA

1.4.8.16 Is_a_Composition

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF ProcessComponent
ComunityProcess

ProcessComponent is specialization is generalization Composition Composition

UML «ProcessComponent
»
«ComunityProcess»

Classifier represented
Classifier

collaboration Collaboration «Composition»

1.4.8.17 Nodes in Choreograpy

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF Choreography Choreography _choreography _nodes Node PortActivity or
Pseudostate

UML «Choreography» StateMachine container.
stateMachine

container. container.
... stateMachine

top.subvertex
top.subvertex.
subvertex…

StateVertex «PortActivity» or
«Success» or
«Failure» or
Pseudostate

1.4.8.18 Nodes in Composition

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF Choreography Choreography _choreography _nodes Node PortActivity or
Pseudostate

127 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 February 6, 2002

UML for EDOC - CCA

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

UML «Choreography» Composition namespace ownedElement ClassifierRole «PortActivity» or
«Success» or
«Failure» or
Pseudostate

1.4.8.19 PackageElements

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF Package
ProcessComponent
Protocol

Interface
CommunityProcess

Package owner ownedElements PackageContent Package or
DataType or
Enumeration or
CompositeData or
ExternalDocument
or Protocol or
Interface or
ProcessComponent
or
CommunityProcess

UML Package
«ProcessComponent
» «Protocol»
Classifier
«CommunityProcess
»

Namespace owner ownedElement ModelElement Package or
DataType or
Enumeration or
«CompositeData» or
«Protocol» or
Classifier or
«ProcessComponent
» or
«CommunityProcess
» indirectly through
behavior.top.subvert
ex

128 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 February 6, 2002

UML for EDOC - CCA

1.4.8.20 Ports

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF ProcessComponent
or Protocol or
MultiPort *

PortOwner owner ports Port FlowPort or
ProtocolPort or
MultiPort

UML «ProcessComponent
» or «Protocol» or
«MultiPort»*

Classifier
(indirectly thru
AssociationEnd and
Association)

association.
association.
connection.
participant

the Association may
be stereotyped as
«initiates» or
«responds»

association.
association.
connection.
participant

Classifier
(indirectly thru
AssociationEnd and
Association)

«FlowPort» or
«ProtocolPort» or
«MultiPort»

(*) Constrained to «FlowPort». See Stereotype definitions, in sections above.

Additional Notes:

The MOF row is the description of the relationship in the metamodel:

The ProcessComponent, Protocol and MultiPort inherits from PortOwner, and therefore has a role 'owner' in a relationship
with Port, which participates in the relationship with the role name 'ports'. Specific subtypes of Port are FlowPort,
ProtocolPort, OperationPort and MultiPort, that are related with ProcessComponent through the relationship inherited from
Port.

The UML row identifies the UML relationships to represent the relationship in the metamodel, above.

The stereotypes «ProcessComponent», «Protocol» and «MultiPort», corresponding to the metamodel elements of the same
name, has a baseClass inheriting from Classifier, and therefore may be the participant in an AssociationEnd of a UML
Association, with Classifier as the participant of the other AssociationEnd. The stereotypes with baseClass subtype of
Classifier, «Port», «FlowPort», «ProtocolPort», and «MultiPort», corresponding to the metamodel elements of same name,
are related with «ProcessComponent» through the said relationships with UML AssociationEnd and UML Association.
MultiPort may only aggregate FlowPort.

129 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 February 6, 2002

UML for EDOC - CCA

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF ProcessComponent
or Protocol or
Interface

PortOwner owner ports Port OperationPort

UML «ProcessComponent
» or «Protocol» or
Classifier

Classifier owner feature Feature Operation

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF OperationPort PortOwner owner ports Port Exactly one
FlowPort with
direction
="Responds"

UML Operation BehavioralFeature behavioralFeature parameter Parameter For each attribute of
the «FlowPort».type
a Parameter with
kind=pdk_in and
Parameter.type =
the type of the
Attribute

130 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 February 6, 2002

UML for EDOC - CCA

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF OperationPort PortOwner owner ports Port At most one
FlowPort
with
direction="Responds
" and
postCondition="Suc
cess"

UML Operation BehavioralFeature behavioralFeature parameter Parameter Parameter with
Parameter.type=
FlowPort.type and
kind=pdk_return

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF OperationPort PortOwner owner ports Port with
direction="Responds"
and
postCondition<>"Succ
ess"

FlowPort

UML Operation BehavioralFeature context raisedSignal Signal Signal with feature =
«FlowPort».type.feat
ure

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF Interface PortOwner owner ports Port OperationPort

UML Classifier Classifier owner feature Feature Operation

131 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 February 6, 2002

UML for EDOC - CCA

A metamodel Interface, owner of OperationPort, owner of FlowPort, map in the UML Profile, to a UML Classifier, owner of UML
Operation, with UML Parameter with the type corresponding to the type of the metamodel FlowPort.

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF OperationPort PortOwner owner ports Port FlowPort

UML Operation BehavioralFeature behavioralFeature parameter Parameter Parameter

1.4.8.21 PortUsages in Choreography

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF ProcessComponent
or Protocol

UsageContext extent portsUsed PortUsage PortActivity or
Pseudostate

UML «ProcessComponent
» or «Protocol»
indirectly through
«Choreography»

ModelElement
indirectly through
StateMachine

indirectly through
container.
stateMachine.
context

indirectly through
behavior.top.subverte
x

StateVertex indirectly
through StateMachine

«PortActivity» or
Pseudostate or
«Success» or
«Failure» indirectly
through
«Choreography»

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF PortActivity UsageContext extent portsUsed PortUsage PortActivity or
Pseudostate

UML «PortActivity» CompositeState container subvertex StateVertex «PortActivity» or
Pseudostate or
«Success» or
«Failure»

132 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 February 6, 2002

UML for EDOC - CCA

1.4.8.22 PortUsages in Composition

 MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF ProcessComponent UsageContext extent portsUsed PortUsage PortConnector

UML «ProcessComponent
» indirectly through
«Composition»

Classifier
indirectly through
Collaboration

indirectly through
_representedClassifie
r. ownedElements

indirectly through
owner.
representedClassifier
or

owner.owner

ClassifierRole
indirectly through
Collaboration

«PortConnector»
indirectly through
«Composition»

 MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF ComponentUsage UsageContext extent portsUsed PortUsage PortConnector

UML «ComponentUsage» ClassifierRole
(indirectly thru
AssociationEndRole
and AssociationRole)

association.
association.
connection.
participant

association.
association.
connection.
participant

ClassifierRole
(indirectly thru
AssociationEndRole
and AssociationRole)

«PortConnector»

 MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF PortConnector UsageContext extent portsUsed PortUsage PortConnector

UML «PortConnector» ClassifierRole
(indirectly thru
AssociationEndRole
and AssociationRole)

association.
association.
connection.
participant

association.
association.
connection.
participant

ClassifierRole
(indirectly thru
AssociationEndRole
and AssociationRole)

«PortConnector»

133 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 February 6, 2002

UML for EDOC - CCA

1.4.8.23 Properties

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF ProcessComponent ProcessComponent component properties PropertyDefinition PropertyDefinition

UML «ProcessComponent
»

Classifier owner feature StructuralFeature
Attribute

 «Property
Definition»

1.4.8.24 PropertyType

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF PropertyDefinition PropertyDefinition _type type DataElement DataType or
Enumeration or
CompositeData
ExternalDocument

UML «PropertyDefintion» Attribute typedFeature type Classifier DataType or
Enumeration or
«CompositeData»
«ExternalDocument
»

1.4.8.25 ProtocolType

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF ProtocolPort ProtocolPort _uses uses Protocol Protocol

134 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 February 6, 2002

UML for EDOC - CCA

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

UML «ProtocolPort» GeneralizableElemen
t

specialization.child generalization.parent Generalizable Element «Protocol»

1.4.8.26 Represents in Choreography

The metamodel element Choreography is represented by a UML StateMachine, where a PortActivity in the metamodel is mapped to
a stereotype of CompositeState.

The Represents relationship in the metamodel, that links a PortActivity with a Port, corresponds in UML to a TaggedValue of the
Stereotype «PortActivity».

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF FlowPort or
ProtocolPort or
OperationPort or
MultiPort

Port represents _represents PortUsage PortActivity

UML «FlowPort» or
«ProtocolPort» or
«OperationPort » or
«MultiPort»

Class taggedValue "uses" N/A : tagged values
not bidirectional

SimpleState or
CompositeState or
SubmachineState or
StubState or
ActionState or
SubactivityState

«PortActivity»

1.4.8.27 Represents in Composition

The metamodel element Composition is represented by a UML Collaboration.

A PortConnector is mapped to a ClassifierRole.

135 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 February 6, 2002

UML for EDOC - CCA

The "Represents" relationship linking a PortActivity with a Port, is represented in UML as a the UML relationship between a
ClassifierRole and its base Classifier.

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF FlowPort or
ProtocolPort or
OperationPort or
MultiPort

Port represents _represents PortUsage PortConnector

UML «FlowPort» or
«ProtocolPort» or
«OperationPort » or
«MultiPort»

Classifier base _base ClassifierRole «PortConnector»

1.4.8.28 Responder

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF Protocol or
Interface

Protocol _initiator initiator RespondingRole RespondingRole

UML «Protocol» or
Classifier

Classifier association.
association.
connection. participant

association. association.
connection. participant

Classifier «RespondingRole»

136 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 February 6, 2002

UML for EDOC - CCA

1.4.8.29 Source

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF PortActivity or
Pseudostate

Node target incoming AbstractTransition Transition

UML «PortActivity» or
«Success» or
«Failure» or
Pseudostate

StateVertex target incoming Transition Transition

1.4.8.30 Target

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF PortActivity or
Pseudostate

Node source outgoing AbstractTransition Transition

UML «PortActivity» or
«Success» or
«Failure» or
Pseudostate

StateVertex source outgoing Transition Transition

1.4.8.31 TypeProperty

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF FlowPort FlowPort _ typeProperty typeProperty PropertyDefinition PropertyDefinition

137 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 February 6, 2002

UML for EDOC - CCA

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

UML «FlowPort» Class N/A : tagged values
not bidirectional

taggedValue named
"typeExp"

Attribute «PropertyDefinition
»

1.4.8.32 Uses

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF Composition Composition owner uses ComponentUsage ComponentUsage

UML «Composition» Namespace owner ownedElement ModelElement «ComponentUsage»

1.4.8.33 ValueFor

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF PropertyValue PropertyValue elementImport fills PropertyDefinition PropertyDefinition

UML «PropertyValue» Constraint elementImport constrainedElement ModelElement PropertyDefinition

138 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 February 6, 2002

UML for EDOC - CCA

1.4.9 General OCL Definition Constraints

These definition constrains have been incorporated from the OMG Document ad/2000-02-
02, UML Profile for CORBA, Joint Revised Submission Version 1.0 by Data Access
Corporation, DSTC, Genesis Development Corporation, Telelogic AB, UBS AG, Lucent
Technologies, Inc. and Persistence Software.

context ModelElement

 def:
 let allStereotypes : Set(Stereotype) =
 -- set with the Stereotype applied to the
 -- ModelElement and all the stereotypes
 -- inherited by that Stereotype
 self.stereotype->union(

 self.stereotype.generalization.parent.allStereotypes)

 let isStereoTyped(theStereotypeName : String) :

Boolean =
 -- returns true if an Stereotype
 -- with name equalto the argument as been
 -- applied to the ModelElement
 self.stereotype.name = theStereotypeName

 let isStereoKinded(theStereotypeName : String) :

Boolean =
 -- returns true if an Stereotype with its
 -- name equal to the argument, or equal to
 -- any of its inherited Stereotypes,
 -- has been applied to the ModelElement,
 self.allStereotypes->exists(aStereotype :

Stereotype |
 aStereotype.name = theStereotypeName)

February 6, 2002 A UML Profile for Enterprise Distributed Object Computing 139

UML for EDOC - CCA

1.5 Diagramming CCA using UML notation
CCA models may be diagramed using generic as well as CCA specific notations. The
generic notations (as found in UML 1.4) are supported by a wide variety of tools which
allow CCA concepts to be made part of the larger enterprise picture without specific tool
support. When using generic notations the CCA profile stereotypes should be used. CCA
aware design & implementation tools may provide the CCA specific notation in addition to
or instead of the other forms of notation.

This section suggests a non-normative way to utilize generic UML diagrams and CCA
notation to express CCA concepts. For the generic diagrams it does so using an “out of the
box” UML tool – Rational Rose 2000e ®.

1.5.1 Types of Diagram

The diagrams used to express CCA concepts are as follows:

1.5.1.1 Class Diagrams for the Document Model

These are used to express the document model.

1.5.1.2 Class Diagrams for the Component Structure

These are used to define components & protocols, their ports and properties.

1.5.1.3 Collaboration Diagrams for Composition

These are used to express the composition of components within another component or
community processes.

1.5.1.4 State or Activity Diagrams for Protocols & Process
Components

These express the ordering constraints on ports within or between components.

1.5.1.5 CCA Notation for Process Component Structure &
Composition

This expresses the component structure and composition in a more compact and intuitive
form, thus replacing the class and collaboration diagrams. We will show how the CCA
notation expresses the same concepts found in the generic diagrams.

1.5.2 The Buy/Sell Example

The techniques for diagramming CCA will be presented by example. We will utilize a
simple buy/sell business process to illustrate the concepts. We will summarize the points in
the specification from the perspective of using a diagramming tool.

The basic business problem of buy/sell is to define a “community process” with two actors
– a buyer and seller. These two actors “collaborate” within this process to effect an order.

140 A UML Profile for Enterprise Distributed Object Computing February 6, 2002

UML for EDOC - CCA

1.5.3 Collaboration diagram shows community process

At the highest level we show a collaboration diagram of the Buy/Sell community process.
In the design tool we also created a package for this process to hold the relevant model
elements. See Figure 20.

 : Buyer : Seller

 : Buys : Sells

Buy/Sell Comminity
Process

Figure 20: Top Level Collaboration Diagram

This collaboration shows both business roles: “Buyer” and “Seller”. These are each a
“ComponentUsage” in the CCA Meta-model. It also shown that the buyer has a “buys”
port and the seller has a “sells” port that are connected by a Connection in this
collaboration. The “buys” and “sells” ports are “PortConnectors” in the CCA Meta-model.
The line between “Buys” and “sells” indicates that the buyer and seller collaborate on these
ports using a “Connection”.

There is no way to show which port is the initiator and which is the responder in a
collaboration diagram, so we have noted the “buys” in blue and “sells” in green, for those
of you who have color (for others you may be able to tell from the shade).

Note that “buys” and “sells” are shown inside of “buyer” and “seller”, respectively. The
use of this nested classifier notation shown that the ports are owned by the component. We
could have also shown the ports separately with a connected line, but nesting them seems to
better reflect the underlying semantics.

The design tool we are using does not show stereotypes in a collaboration diagram, if they
did show you would see that buyer and seller have the <<ComponentUsage>> stereotype
and “Buys” and “Sells” have the <<PortConnector>> stereotype. You would also see that
the entire package has the stereotype <<CommunityProcess>>.

The following is a summary of the elements, stereotypes and base elements you would use
in a collaboration diagram for a community process:

1.5.3.1 Summary of stereotypes for a Community Process

CCA element Stereotype Base UML Element Example Elements

CommunityProcess <<CommunityProcess>> Package or Subsystem BuySell

ComponentUsage <<ComponentUsage>> Classifier Role (Object*) Buyer, Seller

PortConnector <<PortConnector>> Classifier Role (Object*) Buys, Sells

Connection None Association Role (Object Link*) Link from buys to sells

February 6, 2002 A UML Profile for Enterprise Distributed Object Computing 141

UML for EDOC - CCA

CCA element Stereotype Base UML Element Example Elements

ContextualBinding <<ContextualBinding>> Binding (Note*) None – used to refine which
component type to use

PropertyValue <<PropertyValue>> Constraint (Note*) None – use to set a
configuration property of a
component

Table 9: Summary of stereotypes for a Community Process

* Denotes the name used in the design tool

1.5.4 Class diagram for protocol structure

The buys and sells ports seen in the community process must have a prescribed protocol, a
description of what information flows between them. This is shown in a class diagram
(Figure 21). Additional information as to when information flows between them is shown
on an associated state or activity diagram. The class diagram can include the definition of
the data that flows between them (the document model), or this information can be shown
on a separate class diagram.

Order
<<CompositeData>>

OrderConfirmation
<<Compos iteData>>

SendOrder
(from Buy SellProtocol)

<<FlowPort>>
GetConfirmat ion

(from BuySellProtocol)

<<FlowP ort>>

BuySellProtocol
<<Protocol>><<responds>>

<<ini tiates>>

OrderDenied
<<Compos iteData>>GetDenied

(from BuySellProtocol)

<<FlowP ort>>

<<initiates>>

Class diagram for buy/sell protocol

Figure 21: Class diagram for protocol structure

This diagram shows the protocol as well as the data used in the protocol (detail suppressed
for this view). The protocol is a class stereotyped as <<Protocol>>. It has a set of flow
ports: SendOrder, GetConfirmation, GetDenied. Each of these flow ports has an
association to the data that flows over it; Order, OrderConfirmation and OrderDenied –
respectivly.

A very important aspect of a port is its direction (initiates or responds), which is a tagged
value. Since these tagged values don’t sow on the diagram we have also stereotyped the
relation to the ports as either <<initates>> or <<responds>> and have changed their color as
was done in the collaboration diagram.

What this diagram shows is that implementers of the protocol “BuySellProtocol” will
receive a “SendOrder” containing an “Order” and will send out a “GetConfirmation” (with
data “OrderConfirmation”) and/or a “GetDenied” (with data “OrderDenied”).

142 A UML Profile for Enterprise Distributed Object Computing February 6, 2002

UML for EDOC - CCA

The following is a summary of the elements, stereotypes and base elements you would use
in a collaboration diagram for a protocol:

1.5.4.1 Summary of stereotypes for a Protocol

CCA element Stereotype Base UML Element Example Elements

Protocol <<Protocol>> Class or Subsystem BuySellProtocol

FlowPort <<FlowPort>> Class SendOrder,
GetConfirmation,
GetDenied

“Ports” relation Optional: <<initiates>> or
<<responds>>

Association Lines between FlowPorts
and BuySellProtocol

ProtocolPort <<ProtocolPort>> Class None – used to nest one
protocol in another

OperationPort <<OperationPort>> Class None – used to define a
two-way message (could
have been used for BuySell)

InitiatingRole <<InitiatingRole>> with
relation to protocol

Class None – Used to name the
initiating “side” of the
protocol (the client)

RespondingRole <<RespondingRole>>
with relation to protocol

Class None – Used to name the
responding “side” of the
protocol (the service)

Interface Optional: <<Interface>> Classifier None – defines an object
service

Direction (value) <<initiatiates>> Association SendOrder

Direction (value) <<responds>> Association OrderConfirmation,
OrderDenied

Table 10: Summary of stereotypes for a Protocol

1.5.4.2 Summary of tagged values for a Protocol

While tagged values can’t be seen in the diagram, these elements will have tagged values.
The tagged values used to define a protocol are:

CCA attribute Tagged Vale Applies to Example Values

synchronous synchronous FlowPort, ProtocolPort,
OperationPort, MultiPort

All ports

Synchronous=false (The
response may come back at
a later time)

transactional transactional FlowPort, ProtocolPort,
OperationPort, MultiPort

True for all ports – each
interaction is atomic.

February 6, 2002 A UML Profile for Enterprise Distributed Object Computing 143

UML for EDOC - CCA

CCA attribute Tagged Vale Applies to Example Values

direction direction FlowPort, ProtocolPort,
OperationPort, MultiPort

Initiates for SendOrder.

responds for
GetConfirmation &
GetDenied

postCondition postcondition FlowPort, ProtocolPort,
OperationPort, MultiPort

GetConfirmation=Success

GetDenied=BusinessFailure

Table 11: Summary of tagged values for a Protocol

1.5.5 Activity Diagram (Choreography) for a Protocol

The class diagram for a protocol (Figure 22) shows what the protocol will send and receive
but not when. The activity diagram of the prtocol adds this information by specifying when
each port will perform its activity (sending and receiving information).

SendOrder

GetConfirmation GetDenied

<<Success>> <<BusinessFailure>>

Figure 22: Choreography of a Protocol

As you can see, the activity diagram for the protocol is quite simple, it shows the start state,
one activiation of each port and the transitions between them. It also shows that after the
“SendOrder” a choice is made and either “GetConfirmation” or “GetDenied” is activated,
but not both.

The start state (Black circle) shown where the protocol will start. It then goes to a
“PortActivity” for the SnedOrder port (the port and the activity have the same name in this
case). It then shows a choice (the diamond) and PortAcitivites for GetConfirmation and
GetDenied ports. It then shows that either of these ends the protocol, but that
GetConfirmation ends it with the status of Business Success while GetDenied ends it with
BusinessFailure. (Success and failure can be tested in later transitions, using a guard on the

144 A UML Profile for Enterprise Distributed Object Computing February 6, 2002

UML for EDOC - CCA

transition). The transitions (each of the arrows) clearly shows the flow of control in the
protocol.

Note that if there are multiple activities for one port it may be convenient to use swim lanes,
one for each port. But swim lanes are not required.

What can not be seen is that each PortActivity has a tagged value: “represents” to connect it
to the port it is an activity of. In the example “represents” will be the same as the activity
name.

1.5.5.1 Summary of stereotypes for an Activity Diagram or
Choreography

CCA element Stereotype Base UML Element Example Elements

Choreography <<Choreography>> StateMachine BuySellProtocol (not
visible)

PortActivity <<PortActivity>> State SendOrder,
GetConfirmation,
GetDenied

Psedostate (initial) None (Black circle) Psedostate (initial) Start state

Psedostate (fork) None (bar) Psedostate (fork) None – shows concurrency
in process

Psedostate (join) None (bar) Psedostate (join) None – shows concurrency
coming together.

Psedostate (choice) None (diamond) Psedostate (choice) Choice of confirm or
denied.

Transition <<ChoreographyTransition>> Transition All arrows

Table 12: Stereotypes for an Activity Diagram or Choreography

1.5.5.2 Summary of tagged values for a Choreography

While tagged values can’t be seen in the diagram, these elements will have tagged values.
The tagged values used to define a Choreography are:

CCA attribute Tagged Vale Applies to Example Values

represents <<represents>> PortActivity All Activities

Represents has the same
value as element name

Table 13: Tagged Values for a Choreography

1.5.6 Class Diagram for Component Structure

The external “contract” of a component is shown on two diagrams – the class diagram for
structure and the activity diagram for Choreography (much like the protocol). The structure
shows the process component(s), their ports and properties.

February 6, 2002 A UML Profile for Enterprise Distributed Object Computing 145

UML for EDOC - CCA

Buys
(from Buyer)

<<ProtocolPort>>

Buyer
<<ProcessComponent>> <<initiates>> Sells

(from Seller)

<<ProtocolPort>>

Seller
<<ProcessComponent>><<responds>>

BuySellProtocol
<<Protocol>>

Figure 23: Class Diagram for Component Structure

This class diagram shows two process components being defined: “Buyer” and “Seller”.
Each process component uses the “ProcessComponent” stereotype. It also shows that each
of these components has one protocol port each: “Buys” and “Sells”, respectively and that
both of these ProtocolPorts implement the BuySellProtocol we saw earlier.

We can also see that the buyer “initiates” the protocol via the “Buys” port and that the seller
“responds” to (or implements) that interface via the “Sells” port. As before, both ports will
have their direction set in a tagged value – the color and stereotypes on relations is just
informational.

You may also note that we choose to define the ports as nested classes of their process
components, as can be seen from the phrases (from Buyer) and (from Seller). This helps
organize the classes but is purely optional.

These components are the ones we saw being used inside of the community process.

1.5.6.1 Summary of stereotypes for a Process Component
Class Diagram

CCA element Stereotype Base UML Element Example Elements

ProcessComponent <<ProcessComponent>> StateMachine Buyer, Seller

FlowPort <<FlowPort>> Class None – for primitive flows

“Ports” relation Optional: <<initiates>> or
<<responds>>

Association Associations between
ProtcolPorts and
ProcessComponents

ProtocolPort <<ProtocolPort>> Class Buys, Sells

OperationPort <<OperationPort>> Class None – used to define a
two-way message

MultiPort <<MultiPort>> Class None – Shows a set of ports
with a behavioral constraint

PropertyDefinition <<PropertyDefiinition>> Attribute None – shows a
configuration value

Direction (value) <<initiatiates>> Association Buyer

146 A UML Profile for Enterprise Distributed Object Computing February 6, 2002

UML for EDOC - CCA

CCA element Stereotype Base UML Element Example Elements

Direction (value) <<responds>> Seller Association

Table 14: Stereotypes for a Process Component Class Diagram

1.5.6.2 Summary of tagged values for a Process Component
Class Diagram

While tagged values can’t be seen in the diagram, these elements will have tagged values.
The tagged values used to define a process component are:

CCA attribute Tagged Vale Applies to Example Values

granularity granularity ProcessComponent Buyer & Seller are “shared”

isPersistent isPersistent ProcessComponent Buyer & Seller are
persistent

primitiveKind PrimitiveKind ProcessComponent Buyer & Seller are not
primitive so have no
primitiveKind.

primitiveSpec PrimitiveSpec ProcessComponent Buyer & Seller are not
primitive so have no
primitiveSpec

synchronous synchronous FlowPort, ProtocolPort,
OperationPort, MultiPort

All ports

Synchronous=false (The
response may come back at
a later time)

transactional transactional FlowPort, ProtocolPort,
OperationPort, MultiPort

True for all ports – each
interaction is atomic.

direction direction FlowPort, ProtocolPort,
OperationPort, MultiPort

Initiates for Buys

responds for Sells

postCondition postcondition FlowPort, ProtocolPort,
OperationPort, MultiPort

N/A

initial None: UML “Initial
Value”

PropertyDefinition None

isLocked None: UML changability PropertyDefinition None

Table 15: tagged values for a Process Component Class Diagram

1.5.7 Class Diagram for Interface

Classical “services” are provided for with the CCA “Interface”, such a service interface
corresponds to the normal concept of an object. An interface is a one-way version of a
protocol and may not have sub-protocols. Once such service is defined for our example.

February 6, 2002 A UML Profile for Enterprise Distributed Object Computing 147

UML for EDOC - CCA

CustS ervice

checkCustomer(order : Order)
checkCredit(amount : Float) : Boolean

<<Interface>>

Figure 24: Class Diagram for Interface

Since the semantics of such an interface are will understood, let’s just relate to the CCA
elements:

Example
Element

CCA Element UML Element

CustService Interface Interface

CheckCustomer FlowPort Operation

CheckCustomer.
order

DataElement Parameter

checkCredit OperationPort Operation

CheckCredit.
anount

FlowPort Parameter

Table 16: Elements of an Interface

Note that the use of a stereotype for an interface is optional., allowing the use of other
forms of UML classifiers.

Interfaces may have the same tagged values as protcol, but interfaces don’t need
“direction”, the direction is always “responds”.

1.5.7.1 Using Interfaces

While we are on the subject, let’s also look at the class diagram for a process component
with a port that implements this interface.

CustS ervice

checkCustomer()
checkCredit()

<<Interface>>

EnqStatus
(from CustomerComponent)

<<ProtocolPort>>

CustomerComponent
<<Entity>><<responds>>

Figure 25: Using Interfaces

148 A UML Profile for Enterprise Distributed Object Computing February 6, 2002

UML for EDOC - CCA

This diagram shown an “Entity” ProcessComponent (see entity profile) called
“CustomerComponent” which exposes a ProtocolPort (EnqStatus) which implements this
interface.

1.5.8 Class Diagram for Process Components with multiple ports

Up to this point we have seen process components with only one port, while most process
components interact with multiple other components. We are going to define such a
component that will be used inside other components later.

CustService

checkCustomer()
checkCredit()

<<Interface>>

CheckCustomer
(from OrderValidation)

<<ProtocolPort>>

checkOrder
(from OrderValidation)

<<FlowPort>>

acceptOrder
(from CheckCustomer)

<<FlowP ort>>

Order
(from BuySell)

<<Composi teData>>

OrderValidation
<<ProcessComponent>>

OrderDenied
<<Composi teData>>

reject
(from OrderValidation)

<<FlowP ort>>

<<ini tiates>>

<<responds>>

<<initiates>>

<<initiates>>

Order Validation
Component

Figure 26: Process Components with multiple ports

This diagram defines the OrderValidation ProcessComponent. Note that it has the
following ports:

• checkOrder – responding flow port (the order)

• CheckCustomer – initiating protocol port to a service

• AcceptOrder – intiating flow port (the order)

• Reject – initiating flow port (OrderDenied)

February 6, 2002 A UML Profile for Enterprise Distributed Object Computing 149

UML for EDOC - CCA

1.5.9 Activity Diagram showing the Choreography of a Process
Component

Since our Order Validation process component has multiple ports, we may also want to
specify the choreography of those ports, when each will activate. This is done using an
activity diagram much like the protocol.

checkOrder

rejectacc eptOrder

CheckCustomer

success failure

Order Validation
Choreography

Figure 27: Choreography of a Process Component

Since the model elements used here are the same as those for the protocol, we will not
repeat the tables.

1.5.10 Collaboration Diagram for Process Component
Composition

A composition collaboration diagram shows how components are used to help define and
(perhaps) implement another component. We have already seen one composition, for the
community process. Now we will look at a collaboration diagram which specifies the
inside of one of our process components – the seller.

150 A UML Profile for Enterprise Distributed Object Computing February 6, 2002

UML for EDOC - CCA

Seller : Sells

Validate : OrderValidation

: checkOrder

 : reject

 :
acceptOrder

: CheckCustomer

Process : OrderProcessing

: doOrder

: ProcessedOrder

CustB ean :
CustomerComponent

 : SendOrder

 : GetDenied

 :
GetConfirmation

 : EnqStatus

Seller Composit ion

1: checkCustomer(order : Order)

Figure 28: Process Component Composition

This is a collaboration diagram “inside” the seller, which the seller will do to implement its
protocol by using other components. This is a very specific use of a collaboration diagram
and needs some explanation.

First note that, like the community process, we are showing the ports of components and of
protocols nested inside the component or protocol.

The Component Usages are as follows:

• Validate – uses the “OrderValidation” component

• CustBean – uses the CustomerComponent

• Process – uses the “OderProcessing” component (not previously shown)

If we look inside of “Validate” we see a classifier role for each port: checkOrder, reject,
CheckCustomer & acceptOrder. We see the same pattern repeated inside of CustBean and
Process.

Note “Seller : Sells”. This is the representation of the “Sells” port on the component being
defined – in this case “Seller”. There will be such a “proxy” PortConnector for each port
on the outside of the component for which we are making the collaboration diagram. Since
this port is a protocol port, it also has sub-ports which show up as nested classifier roles.

To “connect” one port to another we draw an association role (a line representing a
Connection) from one port to another. The connected ports must have compatible types
and directions. So in this diagram we have made the following connections:

February 6, 2002 A UML Profile for Enterprise Distributed Object Computing 151

UML for EDOC - CCA

1.5.10.1 Connections in the example

From Component
Usage

From Port
Connector

To Port Connector To Component
Usage

Seller Sells CheckOrder Validate

CheckOrder Reject GetDenied Seller

Validate CheckCustomer EnqStatus * Using Operation
“checkCust”

CustBean

Validate AcceptOrder DoOrder Process

Process ProcessOrder GetConfirmation Seller

Table 17: Connections

Each of these connections will cause data to flow from one component to the other, via the
selected ports. It is these Connections which connect the activities of the components
together in the context of this composition.

1.5.10.2 Summary of stereotypes for a Process Component
Collaboration

CCA element Stereotype Base UML Element Example Elements

Composition <<Composition>> Collaboration Seller Composition

ProcessComponent Implied Classifier Seller

ComponentUsage <<ComponentUsage>> Classifier Role (Object*) Validate, Process, CustBean

PortConnector <<PortConnector>> Classifier Role (Object*) Seller, SendOrder,
GetDenied,
GetConfirmation

CheckOrder, reject,
CheckCustomer,
acceptOrder

DoOrder, ProcessOrder

EnqStatus

Connection Connection (Optional) Association Role (Object Link*) See above table

ContextualBinding <<ContextualBinding>> Binding (Note*) None – used to refine which
component type to use

PropertyValue <<PropertyValue>> Constraint (Note*) None – use to set a
configuration property of a
component

Table 18: Stereotypes for a Process Component Collaboration

152 A UML Profile for Enterprise Distributed Object Computing February 6, 2002

UML for EDOC - CCA

1.5.10.3 Special note on “proxy” port activities.

As can be seen from the example, we need to connect the “outside” ports (those on the
component being defined) with the “inside” ports (those on the components being used).
The PortConnectors for the outside ports are shown without an owning ComponentUsage,
while the PortConnectors for the components being used are shown inside of the
ComponentUsage being used.

1.5.10.4 Special note on protocols

Since protocols give us the ability to “nest” ports, ports may be seen within ports to any
level. This example only shown one level of such nesting. The same kind of nesting is
used within activity diagrams – since activities may be nested as well.

1.5.11 Model Management

While the organizational structure of components is not visible in a diagram, it is visible in
tools. The screen shot in Figure 29 shows how the example components are organized in
the Data Access Technologies’ UML tool. Note how using nested classes (such as Ports
being inside of their ProcessComponent) helps to organize the model and keep namespaces
separate.

February 6, 2002 A UML Profile for Enterprise Distributed Object Computing 153

UML for EDOC - CCA

Figure 29: Model Management

1.5.12 Using the CCA Notation for Component & Protocol
Structure

Figure 30 shows the CCA notation being used for the protocol and process component
structure, above. Note that as with the UML notation, this is done from an out-of-the-box
tool (Component-X®) - the notation is not quite standard CCA yet.

154 A UML Profile for Enterprise Distributed Object Computing February 6, 2002

UML for EDOC - CCA

This shows the community process and protocol corresponding to the UML example,
above.

Figure 30: Community Process and Protocol

Figure 31 Composition in CCA notation

Figure 31 shows the seller composition in CCA notation; it is equivalent to the seller
collaboration diagram.

February 6, 2002 A UML Profile for Enterprise Distributed Object Computing 155

UML for EDOC - CCA

2. The CCA Buy-Sell example

This example illustrates the specification of a system of collaborating parties, involved in a
commercial Sale.

The Sales example defines the collaboration between the parties involved.

The focus is on the boundaries between the parties – ComponentUsages, their specification
– ProcessComponents, their connectable point – Ports, and the externally observable
contract of candidate interactions – Protocols .

Each party may be further specified as an internal composition of collaborating sub-
components, onto which the external contract is delegated.

2.1 BuySell Community Process
The BuySell CommunityProcess specifies how a Buyer, a Seller and a Logistics collaborate
to complete a business. Each role is played by a ComponentUsage of the same name. The
specifications for the used ProcessComponent can be found under headers below.

The Buyer collaborates directly with the Seller, through the Buy and Sell ProtocolPorts,
according to the Sales Protocol.

The Seller and the Buyer collaborate with the Logistics, through the Ship and Delivery
ProtocolPorts, according to Protocol of the same names. The specification for the Protocols
can be found under headers below.

156 A UML Profile for Enterprise Distributed Object Computing February 6, 2002

UML for EDOC - CCA

Buyer Seller

BuySell CommunityProcess

Buy Sell

Logistics

ShipDelivery

ShipDelivery

Figure 32 BuySell CommunityProcess

The activities in the BuySell Community Process start by the Buyer initiating the
interactions on its Buy ProtocolPort, according to the Sales Protocol.

The Seller is connected through its Sell ProtocolPort, to the Buy ProtocolPort of the Buyer.
Therefore, the Seller will respond to the Sales Protocol, as initiated from the Buyer.

The Seller will follow the Sales Protocol, and eventually initiate the Ship Protocol with the
Logistics role. The Logistics role will respond to the Ship Protocol, and initiate the
Delivery Protocol on the Buyer. The Buyer will then be able to proceed with the Sales
Protocol, and complete the overall collaboration.

2.2 Protocols

2.2.1 Sales Protocol

The interactions between the ComponentUsage in the BuySell CommunityProcess, above,
occur according to Protocols, as specified below.

February 6, 2002 A UML Profile for Enterprise Distributed Object Computing 157

UML for EDOC - CCA

Protocol Sales

ShippingNoticeBT

responderRole
Seller

initiatorRole
Buyer

QuoteBT

OrderBT

PaymentNoticeBT

<<initiates>> Quote

<<initiates>> OrderBT

<<responds>> ShippingNoticeBT

<<initiates>> PaymentNoticeBT

Success

[OrderDenied]

[OrderConfirmation]

Figure 33 Sales Protocol structure and choreography

Structure

The Sales Protocol is an integration of four simpler Protocols : QuoteBT, OrderBT and
PaymentNoticeBT. The Sales Protocol has a ProtocolPort using each of these simpler
Protocols. The specification for these Protocols can be found under headers below.

Interactions in the ProtocolPorts QuoteBT, OrderBT and PaymentNoticeBT will be
initiated by the initiatorRole of the Sales Protocol.

The initiatorRole of the Sales Protocol will respond to interactions in the
ShippingNoticeBT ProtocolPort.

Choreography

Interactions in the Sales Protocol will begin by the initiatorRole of the Sales Protocol,
initiating and fully performing the interactions of the QuoteBT ProtocolPort.

After this, the initiatorRole will initiate and fully perform the interactions of the OrderBT
ProtocolPort.

If during performance of the interaction of the OrderBT ProtocolPort, an OrderDenied has
flown between initiatorRole and responderRole, then the Protocol ends with a Failure
condition.

Else, if an OrderConfirmation has flown, then the initiatorRole of the Sales Protocol will
respond and fully perform the interactions of the ShippingNoticeBT ProtocolPort.

158 A UML Profile for Enterprise Distributed Object Computing February 6, 2002

UML for EDOC - CCA

After this, the initiatorRole will initiate and fully perform the interactions in the
PaymentNoticeBT ProtocolPort.

2.2.2 QuoteBT Protocol

Protocol QuoteBT

QuoteQuoteRequest

responderRole
Seller

initiatorRole
Buyer

<<initiates>> QuoteRequest

<<responds>> Quote

Figure 34 QuoteBT Protocol structure and choreography

QuoteBT is a Protocol in the form of a Request-Reply, where the initiatorRole will send a
QuoteRequest, and receive a Quote as response. QuoteRequest and Quote are FlowPort of
the QuoteBT Protocol, typed to CompositeData of the same name.

2.2.3 OrderBT Protocol

Protocol OrderBT

OrderDenied

OrderConfirmationOrder

responderRole
Seller

initiatorRole
Buyer

February 6, 2002 A UML Profile for Enterprise Distributed Object Computing 159

UML for EDOC - CCA

<<initiates>> Order

<<responds>> OrderDenied <<responds>> OrderConfirmation

Failure Success

Figure 35 OrderBT Protocol structure and choreography

QuoteBT is a Protocol in the form of a Request-Multiple_Candidate_Reply, where the
initiatorRole will send an Order, and receive as response an OrderConfirmation or an
OrderDenied. Order, OrderConfirmation and OrderDenied are FlowPort of the OrderBT
Protocol, typed to CompositeData of the same name.

An OrderConfirmation leads to a successful termination of the Protocol, while an
OrderDenied is a Failure condition.

2.2.4 ShippingNoticeBT Protocol

Protocol ShippingNoticeBT

ShippingNotice

responderRole
Buyer

initiatorRole
Seller

<<initiates>> ShippingNotice

Figure 36 ShippingNoticeBT Protocol structure and choreography

ShippingNoticeBT is a Protocol with a single FlowPort, corresponding to the sending of a
ShippingNotice by the initiatorRole of the Protocol.

To declare a Protocol for a single flow may be redundant, as the unique FlowPort could be
included wherever the Protocol is used, like in the Sales Protocol of our example. In this
case, ShippingNoticeBT has been defined, for symmetry, and to illustrate the benefit of this
approach, encapsulating as a Protocol the single flow nature of the interaction.

160 A UML Profile for Enterprise Distributed Object Computing February 6, 2002

UML for EDOC - CCA

2.2.5 PaymentNoticeBT Protocol

Protocol PaymentNoticeBT

PaymentNotice

responderRole
Seller

initiatorRole
Buyer

<<initiates>> PaymentNotice

Figure 37 PaymentNoticeBT Protocol structure and choreography

PaymentNoticeBT is a Protocol with a single FlowPort, corresponding to the sending of a
PaymentNotice by the initiatorRole of the Protocol.

2.2.6 ShipBT Protocol

Protocol ShipBT

ShippingRequest

responderRole
Logistics

initiatorRole
Shipper

PickupReceipt

<<initiates>> ShippingRequest

<<responds>> PickupReceipt

Figure 38 ShipBT Protoco structure and choreography l

ShipBT is a Protocol in the form of a Request-Reply, where the initiatorRole will send a
ShippingRequest, and receive a PickupReceipt as response. ShippingRequest and
PickupReceipt are FlowPort of the ShipBT Protocol, typed to CompositeData of the same
name.

2.2.7 DeliveryBT Protocol

Protocol DeliveryBT

DeliveryReceipt

responderRole
Adressee

initiatorRole
Logistics

DeliveryAcceptance

<<initiates>> DeliveryReceipt

<<responds>> DeliveryAcceptance

February 6, 2002 A UML Profile for Enterprise Distributed Object Computing 161

UML for EDOC - CCA

Figure 39 DeliveryBT Protocol structure and choreography

DeliveryBT is a Protocol in the form of a Request-Reply, where the initiatorRole will send
a DeliveryReceipt, and receive a DeliveryAcceptance as response. DeliveryReceipt and
DeliveryAcceptance are FlowPort of the DeliveryBT Protocol, typed to CompositeData of
the same name.

2.3 Components

2.3.1 Buyer ProcessComponent

Buyer

BuyDelivery

Failure

Success

<<initiates>> Buy

<<responds>> Delivery

[OrderConfirmation][OrderDenied]

Figure 40 Buyer ProcessComponent structure and choreography

Buyer ProcessComponent is used in the BuySell CommunityProcess, as ComponentUsage
of the same name.

Buyer has two ProtocolPort named Buy and Delivery.

The Buyer initiates interactions through the Buy ProtocolPort according to the Sales
Protocol. The Delivery ProtocolPort responds to the DeliveryBT Protocol.

The activities of the Buyer ProcessComponent will begin by initiating and fully performing
the interactions through the Buy Port, according to the used Sales Protocol.

After this, if during performance of the interaction of the Sales Protocol through the Buy
ProtocolPort, an OrderDenied has flown, then the choreography ends with a Failure
condition.

Else, if an OrderConfirmation has flown, then the Buyer ProcessComponent will respond to
interactions through the Delivery ProtocolPort, and complete successfully.

162 A UML Profile for Enterprise Distributed Object Computing February 6, 2002

UML for EDOC - CCA

2.3.2 Seller ProcessComponent

Seller

Sales

Quote
Order
Shipping
Payment

Ship

<<initiates>> Ship

<<responds>> Quote

<<responds>> Order

<<initiates>> ShippingNotice

<<responds>> PaymentNotice

Failure

Success

[OrderDenied] [OrderConfirmation]

Sales

Ship

Figure 41 Seller ProcessComponent structure and choreography

Seller ProcessComponent is used in the BuySell CommunityProcess, as ComponentUsage
of the same name.

Seller has two ProtocolPort named Sell and Ship.

The Seller responds to interactions through the Sell ProtocolPort according to the Sales
Protocol. The Ship ProtocolPort initiates interactions in the Delivery Protocol.

The activity of the Seller ProcessComponent will begin when responding and fully
performing the interactions through the Buy Port, according to the used Sales Protocol.

February 6, 2002 A UML Profile for Enterprise Distributed Object Computing 163

UML for EDOC - CCA

The Failure termination condition of the Sales Protocol is also a Failure termination
condition of the choreography of the Seller ProcessComponent.

In the choreography for the Seller ProcessComponent, the interactions through the Ship
ProtocolPort, according to the ShipBT Protocol, are inserted as a whole in between two
consecutive states of the Sales Protocol in the Sell ProtocolPort.

The choreography of the Seller ProcessComponent is an integration of the choreographies
of the Sales and ShipBT Protocols, of the Sell and Ship ProtocolPort. The integration is
safely achieved by insertion, as a refinement of a Transition in the Sales Protocol, as two
Transitions to and from the inserted Ship PortActivity.

The interactions through the Sell ProtocolPort are integrated with the Ship ProtocolPort, by
insertion of the whole ShipBT Protocol, interleaved between two activities of the Sales
Protocol. This is a case of safe synthesis, where the constraints and partial ordering of each
Protocol are still valid in the synthesized protocol.

The successful termination of the choreography of the Sales Protocol in the Sell
ProtocolPort, is also the successful termination of the Seller ProcessComponent.

This structure and choreography fully specify the external contractual obligations and
expectations of the Seller ProcessComponent.

No details have been offered, about how the Seller ProcessComponent actually performs its
duties, in compliance with the externally observable structure and behavior specified above.

164 A UML Profile for Enterprise Distributed Object Computing February 6, 2002

UML for EDOC - CCA

2.3.3 Seller ProcessComponent – internal composition

Seller

Sales

Quote

Order

ShippingNotice

PaymentNotice

QuoteCalculator

Quote

Seller_Orders

Order

Accounts Receivable

Warehouse

OrderConfirmation

OrderConfirmation Shipping

OrderConfirmation
Payment

Ship
Ship

Figure 42 Seller ProcessComponent : internal composition

In the header above, the externally observable structure and choreography have been
defined, without revealing any internal details of the Seller ProcessComponent.

When designing a system, that will play the Seller role in a BuySell CommunityProcess, the
Seller ProcessComponent will have to be further specified, and its complexity decomposed
in smaller units – and recursively – until the resulting ProcessComponent can be directly
mapped or implemented to non-CCA artifacts.

The internal de-composition of the Seller ProcessComponent, must comply with the
externally observable choreography. If it complies, the Seller may play the role in the
BuySell Community Process – and others using the Seller ProcessComponent definition –
independently of how the Seller ProcessComponent has been internally defined.

In our example, the Seller ProcessComponent is internally composed by using
QuoteCalculator, Seller_Order, Warehouse and AccountsReceivablel components.

February 6, 2002 A UML Profile for Enterprise Distributed Object Computing 165

UML for EDOC - CCA

The Sell ProtocolPort is rendered expanded, displaying the ProtocolPort of the Sales
Protocol, as sub-Port of the Sell ProtocolPort.

The individual sub-ProtocolPort of Sell are delegated or initiated to/from port of sub-
component of Seller.

The usage of QuoteCalculator responds to and handles the Quote sub-port of Sell. The
QuoteCalculator ProcessComponent has a ProtocolPort using the QuoteBT Protocol, and is
therefore compatible for direct delegation from the Quote sub-port of Sell.

Similarly, the Seller_Orders component usage responds to and handles the Order sub-Port
of Sell. In addition, the Seller_Orders ProcessComponent has an additional
OrderConfirmation outgoing flow, connected to the Warehouse and AccountsReceivable
component usages. When Seller_Orders responds an OrderConfirmation, the same
OrderConfirmation will be sent to Warehouse and AccountsReceivable.

The Warehouse component usage responds to the OrderConfirmation from the
Seller_Orders component, and initiates the interactions of the ShipBT Protocol, forwarded
through the Ship ProtocolPort of the container Seller ProcessComponent. After, the
Warehouse component initiates the interactions of the ShippingNoticeBT Protocol, through
the ShippingNotice sub-Port of Sell.

The AccountsReceivable component usage receives OrderConfirmation from
Seller_Orders, and responds to and handles the PaymentNotice sub-port of Sell.

2.3.4 QuoteCalculator ProcessComponent

The QuoteCalculator ProcessComponent has the structure as shown in its component usage
in the Seller internal compositions.

QuoteCalculator has a single ProtocolPort responding to the QuoteBT Protocol.

The chorography of QuoteCalculator corresponds to the choreography of the QuoteBT
Protocol.

2.3.5 Seller_Orders ProcessComponent

Seller_Orders

Order
OrderConfirmation

<<initiates>>
OrderConfirmation

<<responds>> Order

Failure

Success

[OrderDenied]

[OrderConfirmation]

Figure 43 Seller_Orders ProcessComponent structure and choreography

166 A UML Profile for Enterprise Distributed Object Computing February 6, 2002

UML for EDOC - CCA

Seller_Orders ProcessComponent responds to interactions of the OrderBT Protocol through
the Order ProtocolPort.

The Seller_Orders ProcessComponent has an additional OrderConfirmation outgoing flow.
When Seller_Orders responds an OrderConfirmation, the same OrderConfirmation will be
sent also through the FlowPort.

2.3.6 Warehouse ProcessComponent

Warehouse

OrderConfirmation Shipping

Ship

<<initiates>> Ship

<<responds>>
OrderConfirmation

<<initiates>> Shipping

Figure 44 Warehouse ProcessComponent structure and choreography

The Warehouse ProcessComponent receives an OrderConfirmation flow, and initiates the
interactions of the ShipBT Protocol, through the Ship ProtocolPort. After, the Warehouse
component initiates the interactions of the ShippingNoticeBT Protocol, through the
ShippingNotice Port.

2.3.7 AccountsReceivable ProcessComponent

Accounts Receivable

OrderConfirmation
Payment

<<responds>> Payment

<<responds>>
OrderConfirmation

Figure 45 AccountsReceivable ProcessComponent structure and choreography

February 6, 2002 A UML Profile for Enterprise Distributed Object Computing 167

UML for EDOC - CCA

The AccountsReceivable ProcessComponent receives an OrderConfirmation, and responds
to the PaymentNoticeBT Protocol through the Payment ProtocolPort.

2.3.8 Logistics ProcessComponent

Logistics

ShipDelivery

<<initiates>> Delivery

<<responds>> Ship

Figure 46 Logistics ProcessComponent structure and choreography

Logistics ProcessComponent is used in the BuySell CommunityProcess, as
ComponentUsage of the same name.

Logistics has two ProtocolPort named Ship and Delivery.

The Logistics responds to interactions through the Ship ProtocolPort according to the
ShipBT Protocol. The Delivery ProtocolPort initiates interactions of the DeliveryBT
Protocol.

The activities of the Logistics ProcessComponent will begin by responding and fully
performing the interactions through the Ship Port, according to the used ShipBT Protocol.

After this the Logistics ProcessComponent will initiate and fully perform the interactions
through the Delivery ProtocolPort.

The Logistics ProcessComponent integrates the ShipBT and DeliveryBT Protocols, by
safely synthesizing them in a sequence, where the ShipBT Protocol is fully exercised and
completed, before starting the DeliveryBT Protocol.

168 A UML Profile for Enterprise Distributed Object Computing February 6, 2002

UML for EDOC - CCA

Glossary

Table 19, below, defines the specialist terms used in this Submission.

Term Explanation

b2b Business to Business

b2c Business to Customer

BFOP Business Function Object Pattern

CBOP Common Business Object Patterns Consortium

CCA Component Collaboration Architecture – a profile for specifying
components at multiple levels of granularity

EAI Enterprise Application Integration

ebXML XML for Electronic Business

ECA Enterprise Collaboration Architecture – a set of profiles for
making technology independent models of EDOC systems

EDOC Enterprise Distributed Object Computing – what the submission
is all about.

EJB Enterprise JavaBeans

FCM Flow Composition Model

RM-ODP Reference Model of Open Distributed Processing

UML Unified Modeling Language

VMM Virtual metamodel: a formal model of a package of extensions to
the UML metamodel using UML’s own built-in extension
mechanisms

Table 19 Glossary of Terms

February 6, 2002 A UML Profile for Enterprise Distributed Object Computing 169

	Contents
	Tables
	The Component Collaboration Architecture
	Rationale
	Problems to be solved
	Recursive decomposition and assembly
	Traceability
	Automating the development process
	Loose coupling
	Technology Independence
	Enabling a business component Marketplace
	Simplicity

	Levels of ProcessComponent in a Computational Specification
	E-Business Components
	Application Components
	Distributed Components
	Program Components
	Relationships between ProcessComponent levels
	Relationships between ProcessComponent levels

	Approach
	Class Structure (Structure)
	Statecharts (Choreography)
	Collaborations (Composition)
	CCA Notation (Structure & Composition)

	Concepts
	What is a Component Anyway?
	ProcessComponent Libraries
	Execution & Technology profiles
	Specification Vs. Methodology
	Notation

	Conceptual Framework
	ProcessComponent Specification
	Protocols and Choreography
	Primitive and Composed Components
	Composition
	Document & Information Model
	Model Management

	CCA Metamodel
	Structural Specification
	ProcessComponent
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Granularity
	UML Representation

	isPersistent
	UML Representation

	primitiveKind
	UML Representation

	primitiveSpec
	UML Representation

	Related elements
	Ports \(via “PortOwner”\)
	UML Representation

	Supertype (zero or one) , Subtypes (any number)
	UML Representation

	Properties (Any number)
	UML Representation

	Constraints

	Port
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	isTransactional
	UML Representation

	isSynchronous
	UML Representation

	name
	UML Representation

	Direction
	UML Representation

	PostCondition
	UML Representation

	Related elements
	“Owner” ProcessComponent or Protocol \(Exactly O
	UML Representation

	Constraints

	FlowPort
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	None

	Related elements
	type
	UML Representation

	TypeProperty
	UML Representation

	Constraints

	ProtocolPort
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Related elements
	uses
	UML Representation

	Constraints

	OperationPort
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Related elements
	Ports (Via PortOwner)
	UML Representation

	Constraints

	MultiPort
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Related elements
	Ports (Via PortOwner)
	UML Representation

	Constraints

	Protocol
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Related elements
	Ports (Via PortOwner)
	UML Representation

	Initiator
	UML Representation

	Responder
	UML Representation

	Constraints

	Interface
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Related elements
	Ports (Via Protocol & PortOwner)
	Initiator (Via Protocol)
	Responder (Via Protocol)

	Constraints

	InitiatingRole
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	name
	UML Representation

	Related elements
	Protocol
	UML Representation

	Constraints

	RespondingRole
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	
	UML Representation

	Related elements
	Protocol
	UML Representation

	Constraints

	PropertyDefinition
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	name
	UML Representation

	initial
	UML Representation

	isLocked
	UML Representation

	Related elements
	component
	UML Representation

	type
	UML Representation

	Constraints

	PortOwner
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Related elements
	ports
	UML Representation

	Constraints

	Choreography
	Choreography
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Related elements
	Nodes
	UML Representation

	AbstractTransitions
	UML Representation

	Supertype (zero or one) , Subtypes (any number)
	UML Representation

	Node
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	
	UML Representation

	Related elements
	Choreography
	UML Representation

	Incoming
	UML Representation

	outgoing
	UML Representation

	Constraints

	AbstractTransition
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	None

	Related elements
	Choreography
	UML Representation

	Source
	UML Representation

	Target
	UML Representation

	Constraints

	Transition
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	preCondition
	UML Representation

	Related elements
	Choreography (Via AbstractTransition)
	UML Representation

	Source
	UML Representation

	Target
	UML Representation

	Constraints

	PortUsage
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Related elements
	extent
	UML Representation

	Represents
	UML Representation

	Constraints

	UsageContext
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Related elements
	PortsUsed
	UML Representation

	Constraints

	PortActivity
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Related elements
	Constraints

	PseudoState
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Kind ; PseudostateKind

	Related elements
	Constraints

	Composition
	Composition
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Related elements
	bindings
	UML Representation

	uses
	UML Representation

	Connection (via choreography and AbstractTransition)
	UML Representation

	PortConnector (via Choreography and nodes)
	UML Representation

	Constraints

	ComponentUsage
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Name
	UML Representation

	Related elements
	owner
	UML Representation

	Uses
	UML Representation

	PortsUsed (Via UsageContext)
	UML Representation

	Constraints

	PortConnector
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Related elements
	Represents (via PortUsage)
	Contexts (via PortUsage)
	Incoming and Outgoing Connections (Via PortUsage and Node)

	Constraints

	Connection
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Related elements
	Source and Target PortConnectors (Via PortUsage, Node & AbstractTransition)

	Constraints

	PropertyValue
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	value
	UML Representation

	Related elements
	Owner
	UML Representation

	Fills
	UML Representation

	Constraints

	ContextualBinding
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	None

	Related elements
	owner
	UML Representation

	fills
	UML Representation

	bindsTo
	UML Representation

	Constraints

	CommunityProcess
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	None

	Related elements
	None

	Constraints
	None

	Document Model
	DataElement
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	None

	Related elements
	constraints

	Constraints

	DataType
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	None

	Related elements
	None

	Constraints

	Enumeration
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	None

	Related elements
	Values
	UML Representation

	Initial
	UML Representation

	Constraints

	EnumerationValue
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	name

	Related elements
	Enumeration
	UML Representation

	Constraints

	CompositeData
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extend
	DataElements
	Properties
	None

	Related elements
	Feature
	UML Representation

	Supertype
	Subtypes
	UML Representation

	Attribute
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	isByValue
	UML Representation

	required
	UML Representation

	many
	UML Representation

	initialValue
	UML Representation

	Related elements
	type
	UML Representation

	owner
	UML Representation

	DataInvariant
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Expression
	UML Representation

	isOnCommit (Default: False)
	UML Representation

	Related elements
	ConstrainedElement
	UML Representation

	ExternalDocument
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	MimeType
	SpecURL
	ExternalName

	Related elements
	None

	Constraints

	Model Management
	Package
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Related elements
	OwnedElements
	UML Representation

	Constraints

	PackageContent
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	name
	UML Representation

	Related elements
	namespace
	UML Representation

	Constraints

	ElementImport
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	None

	Related elements
	ModelElement

	Constraints

	CCA Notation
	CCA Specification Notation
	Composite Component Notation
	Community Process Notation

	UML Profile
	Tables mapping concepts to profile elements
	UML Profile - Introduction
	Stereotypes for Structural Specification
	
	Applicable Subset

	«ProcessComponent»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Correspondence of metamodel attributes with UML attributes
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«Port»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Correspondence of metamodel attributes with UML attributes
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«FlowPort»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«ProtocolPort»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«MultiPort»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	UML Operation represents OperationPort
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«Protocol»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Correspondence of metamodel attributes with UML attributes
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«InitiatingRole»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Correspondence of metamodel attributes with UML attributes
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«RespondingRole»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Correspondence of metamodel attributes with UML attributes
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	UML Classifier represents Interface
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Correspondence of metamodel attributes with UML attributes
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«PropertyDefinition»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Correspondence of metamodel attributes with UML attributes
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«enumeration» DirectionKind
	Instantiation in a model
	Semantics
	Enumeration Literals

	«enumeration» GranularityKind
	Instantiation in a model
	Semantics
	Enumeration Literals

	Stereotypes for Choreography
	
	Applicable Subset

	«Choreography»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«PortActivity»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Correspondence of metamodel attributes with UML attributes
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	UML Transition
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	UML Pseudostate
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«Success»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«Failure»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«enumeration» Status
	Instantiation in a model
	Semantics
	Enumeration Literals

	Stereotypes for Composition
	
	Applicable Subset

	«Composition»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«ComponentUsage»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Correspondence of metamodel attributes with UML attributes
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«PortConnector»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Correspondence of metamodel attributes with UML attributes
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«Connection»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«PropertyValue»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«ContextualBinding»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«CommunityProcess»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	DocumentModel «profile» Package
	«CompositeData»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	"isByValue" Tagged Definition
	«DataInvariant»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Correspondence of metamodel attributes with UML attributes
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«ExternalDocument»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	N/AFormal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	UML Model_Management Package
	Relationships
	AttributeType
	Bindings
	BindsTo
	Configuration
	Connections in Choreography
	Connections in Composition
	DataAtribute
	DataConstraint
	DataGeneralization
	Fills
	FlowType
	Generalization
	ImportElement
	Initiator
	Is_a_Choreography
	Is_a_Composition
	Nodes in Choreograpy
	Nodes in Composition
	PackageElements
	Ports
	PortUsages in Choreography
	PortUsages in Composition
	Properties
	PropertyType
	ProtocolType
	Represents in Choreography
	Represents in Composition
	Responder
	Source
	Target
	TypeProperty
	Uses
	ValueFor

	General OCL Definition Constraints

	Diagramming CCA using UML notation
	Types of Diagram
	Class Diagrams for the Document Model
	Class Diagrams for the Component Structure
	Collaboration Diagrams for Composition
	State or Activity Diagrams for Protocols & Process Components
	CCA Notation for Process Component Structure & Composition

	The Buy/Sell Example
	Collaboration diagram shows community process
	Summary of stereotypes for a Community Process

	Class diagram for protocol structure
	Summary of stereotypes for a Protocol
	Summary of tagged values for a Protocol

	Activity Diagram (Choreography) for a Protocol
	Summary of stereotypes for an Activity Diagram or Choreography
	Summary of tagged values for a Choreography

	Class Diagram for Component Structure
	Summary of stereotypes for a Process Component Class Diagram
	Summary of tagged values for a Process Component Class Diagram

	Class Diagram for Interface
	Using Interfaces

	Class Diagram for Process Components with multiple ports
	Activity Diagram showing the Choreography of a Process Component
	Collaboration Diagram for Process Component Composition
	Connections in the example
	Summary of stereotypes for a Process Component Collaboration
	Special note on “proxy” port activities.
	Special note on protocols

	Model Management
	Using the CCA Notation for Component & Protocol Structure

	The CCA Buy-Sell example
	BuySell Community Process
	Protocols
	Sales Protocol
	
	Choreography

	QuoteBT Protocol
	OrderBT Protocol
	ShippingNoticeBT Protocol
	PaymentNoticeBT Protocol
	ShipBT Protocol
	DeliveryBT Protocol

	Components
	Buyer ProcessComponent
	Seller ProcessComponent
	Seller ProcessComponent – internal composition
	QuoteCalculator ProcessComponent
	Seller_Orders ProcessComponent
	Warehouse ProcessComponent
	AccountsReceivable ProcessComponent
	Logistics ProcessComponent

	Glossary

