
J et Pr op u ls i on La b or a t or y
1 F eb ru a r y 202 4

E d S e i d e w i t z
M o d e l D r i v e n S o l u t i o n s
e d - s @ m o d e l d r i v e n . c o m

Kernel Modeling Language (KerML)

© 2024 Model Driven Solutions, Inc.

for Building Modeling Languages

mailto:ed-s@modeldriven.com

SysML v2 Language Architecture

Root
Syntax

Core
Syntax

Core
Semantics

semantic
specification

Kernel Modeling Language
(KerML)

Direct semantic mapping
to formal logic

Kernel
Syntax

Kernel Model
Library

metamodel

semantic library

Systems
Syntax

Systems and
Domain Model

Libraries

metamodel

semantic library

Systems Modeling Language
(SysML)

Declarative semantic
base elements and
domain-specific libraries
modeled using SysML

Root syntactic elements
without model-level
semantics (e.g., packaging)

Declarative semantic
base elements modeled
using KerML

1 February 2024© 2024 Model Driven Solutions, Inc.2

� Type – classifies a set of instances
¡ Classifier – a type that classifies a subset of the things in the universe of discourse
¡ Feature – a type that classifies pairs of things classified by a domain (featuring) type and a

co-domain (featured) type

� Specialization – relates a subtype that classifies a subset of the instances of a
supertype
¡ Subclassification – specialization between two classifiers
¡ Subsetting – specialization between tw0 features

§ Redefinition – subsetting that redefines a feature in a specialized context

¡ Feature Typing – specialization between a feature and its featured type (co-domain)

� Type Featuring – relates a feature to its featuring type (domain)

KerML Core
Key Semantic Concepts

1 February 2024© 2024 Model Driven Solutions, Inc.3

� Applicable to any kind of type
¡ Disjoining – a relationship between types asserted to classify disjoint sets of instances
¡ Unioning – a relationship between a union type and one of the types being unioned
¡ Intersecting – a relationship between an intersection type and one of the types being

intersected
¡ Differencing – a relationship between a difference type and one of the types being

differenced
¡ Conjugation – a relationship between a conjugated type an an original type such that the

conjugated type inherits features from the original type with directions reversed

� Applicable only to features
¡ Feature Inverting – a relationship between two features asserting they are inverses
¡ Feature Chaining – a relationship between a chained feature and one of the features in the

chain

KerML Core
Other Relationships

1 February 2024© 2024 Model Driven Solutions, Inc.4

KerML Core
Basic Syntax

package KerML_Base_Example {
 classifier TorqueValue;

 classifier Person;
 classifier Engine {
 feature engineTorque: TorqueValue[1];
 }
 classifier Wheel;

 classifier Car {
 feature driver: Person[0..1];
 feature engine: Engine[1];
 feature wheels: Wheel[4];
 }
}

A feature is commonly an owned
member of its featuring type (in this
case Engine).

Multiplicity constrains the allowable
cardinality of featured values for
each featuring value. (E.g., that 0 or
1 drivers are allowed for each Car.)

TorqueValue is the
featured type.

1 February 2024© 2024 Model Driven Solutions, Inc.5

1 February 2024© 2024 Model Driven Solutions, Inc.6

KerML Core
Mathematical Semantics

� Anything – all things in the universe of discourse
¡ Data Value – a thing without individual identity or existence in space or time
¡ Occurrence – a thing with individual identity, that exist over time, and (possibly) extend

across space
§ Object – an occurrence that is a structural objects
§ Performances – an occurrences that is a performance of behavior

¡ Link – Relationships between participant things
§ Binary Link – a link between exactly two participants
§ Link Object – a link that is also an object that exists over time (and possibly space)

¢ Binary Link Object – a link object between exactly two participants

KerML Kernel Layer
Key Semantic Concepts

1 February 2024© 2024 Model Driven Solutions, Inc.7

KerML Kernel
Semantic Concept Model (Notional)

classifier Anything;

classifier DataValue specializes Anything;

classifier Occurrence specializes Anything {
 feature suboccurrences : Occurrence[0..*];
}

classifier Object specializes Occurrence {
 feature subobjects : Object subsets suboccurrences;
 feature ownedPerformances : Performance subsets suboccurrences;
 feature enactedPerformance : Performance;
}

classifier Performance specializes Occurrence {
 feature subperformances : Performance subsets suboccurrences;
}

classifier Link specializes Anything {
 feature participant: Anything[0..*] nonunique ordered;
}
classifier BinaryLink specializes Link {
 feature redefines participant: Anything[2] nonunique ordered;
 end feature source: Anything[0..*] nonunique subsets participant;
 end feature target: Anything[0..*] nonunique subsets participant;
}
classifier BinaryLinkObject specializes BinaryLink, Object;

A suboccurrence is an occurrence
that will be destroyed if its
featuring occurrence is destroyed.

A subperformance is a suboccurrence of a
performance that is also a performance.

This is a simplified model of
an "ontology" of the basic
kinds of things.

An owned performance is a suboccurrence
of an object that is a performance.

A subobject is a suboccurrence of an object
that is also an object.

An enacted performance is a performance
that is caused or performed by an object.

End features have special
semantics for multiplicity.

1 February 2024© 2024 Model Driven Solutions, Inc.8

KerML Kernel
Applying Semantic Concepts
package KerML_Core_Example {
 import Kernel_Library::*;

 classifier TorqueValue specializes DataValue;

 classifier Person specializes Object;
 classifier Engine specializes Object {
 feature engineTorque: TorqueValue[1];
 }
 classifier Wheel specializes Object;

 classifier DriveTrain specializes BinaryLinkObject {
 end drivingEngine: Engine[0..1] redefines source;
 end drivenWheel: Wheel[0..*] redefines target;
 }

 classifier Car specializes Object {
 feature driver: Person[0..1];
 feature engine: Engine[1] subsets suboccurrences;
 feature wheels: Wheel[4] subsets suboccurrences;
 feature drive: DriveTrain subsets suboccurrences {
 end redefines drivingEngine references engine[1];
 end redefines drivenWheel references wheels[2];
 }
 }
}

Classifiers in the user model
specialize concepts from the
semantic model library, identify
what kind of thing they subclassify.

Redefinition allows otherwise
inherited features to instead
be further constrained in a
specialized type.Features are types, too, and

inherit from their featured types
("typing as specialization").

Referencing is a special kind of
subsetting, useful for constraining
the links in a "connection".

1 February 2024© 2024 Model Driven Solutions, Inc.9

KerML Kernel
Syntax for Semantic Concepts

package KerML_Kernel_Example {

 datatype TorqueValue;
 struct Person;
 struct Engine {
 feature engineTorque: TorqueValue[1];
 }
 struct Wheel;

 assoc struct DriveTrain {
 end drivingEngine: Engine[0..1];
 end drivenWheel: Wheel[0..*];
 }

 struct Car {
 feature driver: Person[0..1];
 composite feature engine: Engine[1];
 composite feature wheels: Wheel[4];
 composite connector drive: DriveTrain
 from engine[1] to wheels[2];
 }
}

Syntactic keywords act as "markers"
for implied specializations of base
types from the semantic library,
which can be added automatically by
tooling as necessary.

A data type implies subclassification
of the base type DataValue.

A structure implies subclassification
of the base type Object.

A binary association structure implies
subclassification of the base type
BinaryLinkObject.

A composite feature of a structure
implies subsetting of the subobject
feature of its featuring type.

A connector is a feature that must
be typed by an association. The
from and to parts are shorthands
giving the referenced elements for
the connector ends.

End features implicitly redefine
the source and target ends from
BinaryLinkObject.

1 February 2024© 2024 Model Driven Solutions, Inc.10

KerML Kernel
Semantic Library Models

standard library package Base {
 abstract classifier Anything {
 feature self: Anything[1] subsets things chains things.that;
 }

 abstract datatype DataValue specializes Anything {
 feature self: DataValue redefines Anything::self;
 }

 abstract feature things: Anything [1..*] nonunique {
 feature that : Anything[1];
 }

 abstract feature dataValues: DataValue[0..*] nonunique subsets things;

 abstract feature naturals: ScalarValues::Natural[0..*] subsets dataValues;
…
}

standard library package Links {
 …
 abstract assoc Link specializes Anything {
 readonly feature participant: Anything[2..*] nonunique ordered;
 }

 assoc all BinaryLink specializes Link {
 feature participant: Anything[2] nonunique ordered
 redefines Link::participant;
 readonly end feature source: Anything[0..*] nonunique subsets participant;
 readonly end feature target: Anything[0..*] nonunique subsets participant;
 }

 assoc all SelfLink specializes BinaryLink {
 end feature thisThing: Anything[1] redefines source
 subsets sameThing, sameThing.self;
 end feature sameThing: Anything[1] redefines target
 subsets thisThing;
 }
 …
}

standard library package Occurrences {
…
abstract class Occurrence specializes Anything disjoint from DataValue {
 feature localClock : Clock[1] default universalClock;

 composite feature suboccurrences: Occurrence[0..*] subsets occurrences {
 feature redefines localClock default (that as Occurrence).localClock;
 …
 }

 feature withoutOccurrences: Occurrence[0..*]
 unions successors, predecessors, outsideOfOccurrences
 inverse of withoutOccurrences;

 feature predecessors: Occurrence[0..*] subsets withoutOccurrences;
 feature successors: Occurrence[0..*] subsets withoutOccurrences
 inverse of predecessors {…}
 …

}

1 February 2024© 2024 Model Driven Solutions, Inc.11

� Attribute Value – a value of attributive data on item
� Item – an object that is part of, exists in, or flows through a system

¡ Part – an item that represents part or all of a system and may perform actions for or within
the system

� Port – an object that represents a connection point for a part
� Connection – a link object between any kind of things

¡ Binary Connection – a connection between exactly two things
¡ Interface – a connection between ports

§ Binary Interface – an interface between two ports

� Action – a behavior that can be performed by a part

Systems Modeling
(Some) Key Semantic Concepts

1 February 2024© 2024 Model Driven Solutions, Inc.12

Systems Modeling (in KerML)
Systems Semantic Concept Model (Notional)

datatype AttributeValue;

struct Item {
 composite feature subitems: Item[0..*];
 composite feature subparts: Part[0..*] subsets subitems;
}

struct Part specializes Item {
 feature ownedPorts: Port[0..*];
 composite step ownedActions: Action subsets ownedPerformances;
 step performedActions: Action subsets enactedPerformances;
}

struct Port {
 feature subports: Port[0..*];
}

behavior Action {
 composite step subactions: Action subsets subperformances;
}

assoc struct BinaryConnection {
 end source;
 end target;
}

assoc struct BinaryInterface specializes BinaryConnection {
 end source : Port;
 end target : Port;
}

This is a simplified
ontology of basic systems
modeling concepts.

A step is a feature that is
typed by a behavior.

Implicitly subsets subobjects.
Implicitly subclassifies
DataValue.

Implicitly subclassifies
Performance.

Implicitly subclassifies
BinaryLinkObject.

Implicitly redefines source and
target from BinaryLinkObject.

Implicitly subclassifies
Object.

1 February 2024© 2024 Model Driven Solutions, Inc.13

Systems Modeling (in KerML)
Applying Systems Semantic Concepts

package KerML_Systems_Example {
 import Systems_Library::*;

 datatype TorqueValue specializes AttributeValue;
 struct DrivePort specializes Port {
 out feature torque: TorqueValue;
 }
 struct DrivenPort conjugates DrivePort;
 struct Person specializes Item;
 struct Engine specializes Part {
 feature enginePort: DrivePort subsets ownedPorts;
 }
 struct Wheel specializes Part {
 feature wheelPort: DrivenPort subsets ownedPorts;
 }
 assoc struct DriveTrain specializes Interface {
 end drivePort: DrivePort[0..1];
 end drivenPort: DrivenPort[0..*];
 }
 struct Car specializes Part {
 feature driver: Person[0..1];
 composite feature engine: Engine[1];
 composite feature wheels: Wheel[4];
 composite connector drive: DriveTrain
 from engine.enginePort[1] to wheels.wheelPort[2];
 }
}

An out feature is one whose
value is produced "inside" its
featuring instance but used
"outside" it. (And the opposite for
an in feature.)

Conjugation is a relationship
between types in which in
features of the conjugated type
become out features of the
conjugating type, and vice versa.

Feature chains ("dot notation")
allow navigation across of chain
of features in which the featured
type of each feature is compatible
with the featuring type of the next.

1 February 2024© 2024 Model Driven Solutions, Inc.14

SysML
Syntax for Semantic Concepts
package SysML_Systems_Example {

 attribute def TorqueValue;

 item def Person;
 port def DrivePort {
 out attribute torque: TorqueValue;
 }
 part def Engine {
 port enginePort: DrivePort;
 }
 part def Wheel {
 port wheelPort: ~DrivePort;
 }
 interface def DriveTrain {
 end drivePort: DrivePort[0..1];
 end drivenPort: ~DrivePort[0..*];
 }
 part def Car {
 ref item driver: Person[0..1];
 part engine: Engine[1];
 part wheels: Wheel[4];
 interface drive: DriveTrain

connect engine.enginePort[1] to wheels.wheelPort[2];
 }
}

An attribute definition implies
subclassification of the base
type AttributeValue.

An item definition implies
subclassification of the base
type Item.

A port definition implies subclassification
of the base type Port.

An attribute usage must be
typed by an attribute
definition.

A part definition implies
subclassification of the base
type Part.

A port usage must be typed by a
port definition. A port usage
declared within a part definition
subsets ownedPorts.

Every port definition includes
a nested declaration of its
conjugate, with "~"
prepended to its name

An interface definition implies
subclassification of the base
type Interface.

An item usage must be typed by
an item definition. A referential
usage is one that is not composite.

A part usage must be typed by
a part definition. A part usage
declared within an item or part
definition subsets subparts.

An interface usage must be typed by an interface
definition, and it must connect port usages.

1 February 2024© 2024 Model Driven Solutions, Inc.15

SysML
Systems Model Library

standard library package Attributes {
…
alias AttributeValue for DataValue;
alias attributeValues for dataValues;

}
standard library package Items {

…
abstract item def Item :> Object {
 …
 ref self: Item :>> Object::self;
 …
 abstract item subitems: Item[0..*]
 :> items, subobjects;
 abstract part subparts: Part[0..*]
 :> subitems, parts;
 abstract constraint checkedConstraints: ConstraintCheck[0..*]
 :> constraintChecks, ownedPerformances;
…
}

abstract item items : Item[0..*] nonunique :> objects;
}

standard library package Parts {
…
abstract part def Part :> Item {
 …
 abstract port ownedPorts: Port[0..*] :> ports, timeEnclosedOccurrences;
 abstract ref action performedActions: Action[0..*] :> actions, enactedPerformances;
 abstract action ownedActions: Action[0..*] :> actions, ownedPerformances {
 ref part :>> this : Part = that as Part;
 }
 abstract ref state exhibitedStates: StateAction[0..*]
 :> stateActions, performedActions;
 abstract state ownedStates: StateAction[0..*] :> stateActions, ownedActions;
}

abstract part parts: Part[0..*] nonunique :> items;
}

standard library package Ports {
private import Objects::Object;
private import Objects::objects;
abstract port def Port :> Object {
 ref self: Port :>> Object::self;
 port subports: Port :> timeEnclosedOccurrences;
}

abstract port ports : Port[0..*] nonunique :> objects;
}

1 February 2024© 2024 Model Driven Solutions, Inc.16

SysML
Vehicle Library Model Example

library package SysML_Vehicle_Library {
 attribute def TorqueValue;

 item def Person;
 item persons : Person[0..*] nonunique;

 port def DrivePort {
 out attribute torque: TorqueValue;
 }

 interface def DriveTrain {
 end drivePort: DrivePort[0..1];
 end drivenPort: ~DrivePort[0..*];
 }
 abstract interface driveTrains: DriveTrain[0..*];

 part def Engine {
 port enginePort: DrivePort;
 }
 abstract part engines: Engine[0..*] nonunique;

 part def Wheel {
 port wheelPort: ~DrivePort;
 }
 abstract part wheels: Wheel[0..*] nonunique;

 abstract part def Vehicle {
 abstract part redefines engines;
 abstract part redefines wheels;
 abstract part redefines driveTrains;
 }
}

A usage (feature) not nested
within another type is
considered to implicitly have
Anything as its featuring type.

An abstract usage is one for
which any instance must also
be an instance of some
declared subset. (An interface
usage without connected
features must be abstract.)

An abstract definition is one
for which any instance must
also be an instance of some
declared specialization.

The subset of engines whose
featuring type is a kind of
Vehicle. (The redefinition also
adds engines to the
namespace for Vehicle.)

This is a simple ontology of
vehicle modeling concepts.

1 February 2024© 2024 Model Driven Solutions, Inc.17

SysML
Applying Vehicle Model Concepts

package SysML_Vehicle_Example {
 import SysML_Vehicle_Library::*;

 part def Car specializes Vehicle {
 ref item driver: Person[0..1];

 part carEngine[1] subsets engines;
 part carWheels[4] subsets wheels;

 interface drive: DriveTrain subsets driveTrains
 connect carEngine.enginePort[1]
 to carWheels.wheelPort[2];
 }
}

This subsets the abstract
Vehicle::engines, which is
inherited from Vehicle.

1 February 2024© 2024 Model Driven Solutions, Inc.18

SysML
Vehicle Metadata

package SysML_Vehicle_Metadata {
 import SysML_Vehicle_Library::*;
 private import Metaobjects::SemanticMetadata;

 metadata def person specializes SemanticMetadata {
 redefines baseType = persons meta SysML::Usage;
 subsets annotatedElement : SysML::Usage;
 }

 metadata def drive specializes SemanticMetadata {
 redefines baseType = driveTrains meta SysML::Usage;
 subsets annotatedElement : SysML::InterfaceUsage;
 }

 metadata def engine specializes SemanticMetadata {
 redefines baseType = engines meta SysML::Usage;
 subsets annotatedElement : SysML::PartUsage;
 }

 metadata def wheel specializes SemanticMetadata {
 redefines baseType = wheels meta SysML::Usage;
 subsets annotatedElement : SysML::PartUsage;
 }

 metadata def vehicle specializes SemanticMetadata {
 redefines baseType = Vehicle meta SysML::Definition;
 subsets annotatedElement : SysML::Definition;
 }
}

The base type of a semantic
metadata annotation is bound
to the "metacast" of a type from
the semantic library.

The allowed annotated element
for this metadata can be
restricted to a specific abstract
syntax metaclass.

Metadata are user-definable, model-
level annotations of an element.
Semantic metadata is metadata used
to annotated a type in order to link it to
a base type in a semantic library.

1 February 2024© 2024 Model Driven Solutions, Inc.19

SysML
Vehicle DSML Example

package Vehicle_DSML_Example {
 import SysML_Vehicle_Metadata::*;

 #vehicle def Car {
 ref #person driver[0..1];

 #engine part carEngine[1];
 #wheel part carWheels[4];

 #drive interface
 connect carEngine.enginePort[1]
 to carWheels.wheelPort[2];
 }
}

A user defined keyword starting
with # is a shorthand for
annotating an element with the
named metadata. The metaclass
of the annotated element must be
consistent with what is allowed
for the metadata.

Specializations are now
all implied based on the
metadata annotations.

1 February 2024© 2024 Model Driven Solutions, Inc.20

� Adopted “Beta 1” Specifications
¡ KerML – https://www.omg.org/spec/KerML/
¡ SysML v2 – https://www.omg.org/spec/SysML/

� Latest FTF Revised Specifications
¡ https://github.com/Systems-Modeling/SysML-v2-Release/tree/master/doc

� Finalization Schedule
¡ March 2024 – “Beta 2” specifications available
¡ September 2024 – Finalized (“Beta 3”) specifications available
¡ Mid 2025 – Formal specifications available

1 February 2024© 2024 Model Driven Solutions, Inc.21

Specifications

https://www.omg.org/spec/KerML/
https://www.omg.org/spec/SysML/
https://github.com/Systems-Modeling/SysML-v2-Release/tree/master/doc

