Kernel Modeling Language (KerML)
for Building Modeling Languages

Jet Propulsion Laboratory
1 February 2024

Ed Seidewitz
Model Driven Solutions
ed-s@modeldriven.com

© 2024 Model Driven Solutions, Inc.

mailto:ed-s@modeldriven.com

SysML v2 Language Architecture

Systems Modeling Language

]

Systems
Syntax

(SysML) i —
e -___Mmetamodel ______ Systems and
o Domain Model
____Semantic library___ Libraries

1y

Kernel Modeling Language E
(KerML) | 4

Kernel
Syntax

“--—-- metamodel
Kernel Model

Library

l v semantic l
Core specification Core
Syntax | - Semantics
' Root syntactic elements
| v without model-level
semantics (e.g., packaging)
Root
Syntax

© 2024 Model Driven Solutions, Inc.

Declarative semantic
base elements and
domain-specific libraries
modeled using SysML

r

Declarative semantic
base elements modeled
using KerML

r

Direct semantic mapping
to formal logic

b

1 February 2024

== KerML Core
I‘ Key Semantic Concepts

e Type — classifies a set of instances
o Classifier —a type that classifies a subset of the things in the universe of discourse
o Feature —a type that classifies pairs of things classified by a domain (featuring) type and a
co-domain (featured) type
e Specialization —relates a subtype that classifies a subset of the instances of a
supertype
o Subclassification — specialization between two classifiers

O Subsetting — specialization between two features
= Redefinition —subsetting that redefines a feature in a specialized context

o Feature Typing —specialization between a feature and its featured type (co-domain)

e Type Featuring —relates a feature to its featuring type (domain)

3 © 2024 Model Driven Solutions, Inc. 1 February 2024

KerML Core
Other Relationships

e Applicable to any kind of type
o Disjoining — a relationship between types asserted to classify disjoint sets of instances
o Unioning — a relationship between a union type and one of the types being unioned

o Intersecting —a relationship between an intersection type and one of the types being
intersected

o Differencing — a relationship between a difference type and one of the types being
differenced

o Conjugation —a relationship between a conjugated type an an original type such that the
conjugated type inherits features from the original type with directions reversed

e Applicable only to features
o Feature Inverting — a relationship between two features asserting they are inverses

o Feature Chaining — a relationship between a chained feature and one of the features in the
chain

4 © 2024 Model Driven Solutions, Inc. 1 February 2024

KerML Core
Basic Syntax

package KerML Base Example { |

classifier TorqueValue; TorqueValue is the
featured type.
classifier Person; - ‘
classifier Engine { /
. feature engineTorque: TorqueValue[l];
A feature is commonly an owned // } & q a
member of its featuring type (in this classifier Wheel:

case Engine).

classifier Car {
feature driver: Person[0..1];
feature engine: Engine[l];
feature wheels: Wheel[4]; Muiltiplicity constrains the allowable
} cardinality of featured values for
} each featuring value. (E.g., that O or
1 drivers are allowed for each Car.) y

5 © 2024 Model Driven Solutions, Inc. 1 February 2024

KerML Core
Mathematical Semantics

Notes

1. Forthe checkFeatureResultSpecialization constraint, the implied Specializationisa
FeatureTyping if the owningType of the Feature is a LiteralExpression and a Subsetting if
the owningType is a FeatureReferenceExpression.

8.4.3.1.2 Core i i iminari

The mathematical specification of Core semantics uses a model-theoretic approach. Core mathematical semantics
are expressed in first order logic notation, extended as follows:

1. A conjunction specifying that multiple variables are members of the same set can be shortened to a
comma-delimited series of variables followed by a single membership symbol (s, s, € S is short for
5] €S A s; € S). Quantifiers can use this in variable declarations, rather than leaving it to the body of the
statement before an implication (V1y, t; € V7 ... isshort for Vig, ty t, € Vr A t,€ Vr =).

2. Dots (.) appearing between metaproperty names have the same meaning as in OCL, including implicit
collections [OCL].
3. Sets are identified in the usual set-builder notation, which specifies members of a set between curly braces

("{}"). The notation is extended with "#" before an opening brace to refer to the cardinality of a set.

Element names appearing in the mathematical semantics refer to the Element itself, rather than its instances, using
the same font conventions as given in 8.1.

The mathematical semantics use the following model-theoretic terms, explained in terms of this specification:

+ Vocabulary: Model clements conforming to the KerML abstract syntax, with additional restrictions given
in this subclause.

+ Universe: All actual or potential things the vocabulary could possibly be about.

« Interpretation: The relationship between y and ical structures made of elements of the
universe.

The above terms are mathematically defined below.

+ A vocabulary V= (V1, Vc, VF) is a 3-tuple where:

o Vrisa set of types (model elements classified by Type or its specializations, see 8.3.3.1).

° V¢ € Vrisaset of classifiers (model elements classified by Classifier or its specializations,
see 8.3.3.2), including at least Base : : Anything from KerML Semantic Model Library, see
9222).

VF SVris a set of features (model elements classified by Feature or its specializations, see
8.3.3.3), including at least Base: : things from the KerML Semantic Model Library (see

92.2).

° Vr=VcUVF

+ Aninterpretation /= (4, %, - 7) for Vis a 2-tuple where:

° A is anon-empty set (universe),

o X=(P, <p)isanon-empty set P with a strict partial ordering <p (marking set), and

o - Tis an (interpretation) function relating elements of the vocabulary to sets of all non-empty
tuples (sequences) of elements of the universe, with an element of the marking set in between
each one for sequences of multiple elements. It has domain V7 and co-domain that is the power
set of S, where

S={@)} U {{@,p,d)} U ... U {(@,p,dy - pis1;da2)} U ..
suchthat i€ Z*, d;€ A, p;€ P

The semantics of KerML are restrictions on the i i as given ically in this and
subsequent subclauses on the Core semantics. The phrase result of interpreting a model (vocabulary) element refers
T

to sequences paired with the element by - 7, also called the interpretation of the model element, for short.
The (minimal interpretation) function -7 specializes - 7 to the subset of sequences that have no others in the
interpretation as tails, except when applied to Anything.

minT

Vi€ Type, 51 €S s1€ (™" = 51 € () A (t#Anything = (Vs, €S 55 € (0 A 53# 5, = ~tail(sy, 51)))

Functions and predicates for sequences are introduced below. Predicates prefixed with £orm: are defined in
[fUML], Clause 10 (Base Semantics).

length is a function version of fUML's sequence-length.
Vs, n n=length(s) = (£orm: sequence-length s n)

* atis a function version of f{UML's in-position-count.

Vix, s, n x=at(s, 1) = (form:in-position-count snx)

head is true if the first sequence is the same as the second for some or all of the second starting at the
beginning, otherwise is false.
sy, 5 head(s, s) = form:) A form: 52)
sy, 5 head(s), s2) = (length(s)) < length(s)) A
(VieZ' iz1 A i<length(s)) = at(s), i) = at(sy, 1))

tail is true if the first sequence is the same as the second for some or all of the second finishing at the end,
otherwise is false:

Vs, 57 tail(sy, s) = form:) A form:)
Vsy, 53 tail(sy, s3) = (length(s)) < length(sy)) A
(Vhi€Z" (h=length(s;) - length(s)) A i>h A i<length(sy) = at(sy, i~ h)= at(sy, i)

head-tail is true if the first and second sequences are the head and tail of the third sequence, respectively,
otherwise is false:
sy, 5, head-tail(sy, s,, 5g) =
form: 1) A form: Se 2) A form:)
sy, 5, head-tail(sy, s5, so) = head(s,, so) A tail(sy, so)

concat is true if the first sequence has the second as head, the third as tail, and its length is the sum of the
lengths of the other two, otherwise is false.

Vs, 51, 52 concat(sy, s, 53) = form: 0) A form: s1) A form: 2)
Vs, 51, $2 concat(sy, 51, 52) = (length(so) = length(s)) + length(sy)) A head-tail(sy, s3, so)

concat-around is true if the first sequence has the second as head, the fourth as tail, and the third element

in between.
Vsq, 51, p, 53 concat-around(sy, sy, p, s3) =
form: A £ s1) A form:)
Vso, 51, p, 52 d(so, 51, P, $2) = (length(so) = length(s) + length(sy) + 1) A

head-tail(sy, 53, 50) A a(p, length(s))+1)

(see 8.4.3.1.2) of the Features in a model shall satisfy the following rules:

‘eatures must have length greater than two.

()7 = length(s) > 2

e Feature things is all sequences of length greater than two.

€ S A length(s) > 2 }

pes of length three or more can be treated as if they were interpreted as ordered
, where the first and third elements are interpretations of the domain and co-
ely, while the second element is a marking from P. The predicate feature-pair
quences can be treated in this way.

of a Feature if and only if the interpretation of the Feature includes a sequence

of the two sequences, in order, with an elements of P (marking) marking in

the minimal interpretation of all £eaturingTypes of the Feature.
in the minimal interpretations of all types of the Feature.

iture-pair(sy, p, s, f) =
round(so, s1, p, 52) A
ingType = 51 € ()™ A

52 € (1)""T)

an be related by <p to order 2 across multiple interpretations (values) of f:
ame 51 and s, differing only in p to distinguish duplicate 52 (values of /).

es in a model shall satisfy the following rules:
erpretation of a Feature have a tail with non-overlapping head and tail that are
ture.
N7 = 3s, 51,5, €S, p € P tail(s,, s9) A head-tail(s,, 53, 5) A
(5)) + length(sy) A feature-pair(sy, p, 55, f)
Features are the same as the values of their redefinedFeatures restricted to
4iningFeature.
edefinedFeature =
o fiy € ffeaturingType = s; € (fi,)"") =
(feature-pair(sy, p, 3, f) = feature-pair(sy, p, s2, f))))

a Feature includes the cardinality of its values, counting duplicates.

chain-path-2(sd, fi, f3, sed) =

S AfLLEVE

d, 1, fo, sed) =

€EP ASmES A

) A feature-pair(sm, pml\, scd, f5) }

=fh € VF

-
pair(sd, ped, scd, f) =
{(f1, f2, scd))

-
A

fo, scdy) A

fo, scdy) A

€S

‘at(ppathy, 2) A pmy=at(ppathy, 3) A
‘at(ppathy, 2) A pmy=at(ppathy, 3) A

2 A smy=smy A pmyy <ppmy)) =

<o pedy A

scdy, f) A feature-pair(sd, peds, seds, f))))

two or more others (1, a list of features longer than 1) is the last in a series of
subchains (flc), starting with the first two Features in I, (specifying the first
in I (specifying the second Feature in flc), and so on, to all the Features inf]
ich is the original Feature f). If fis ordered, marking order in interpretations of
r subchains. If fis non-unique, duplicate values of the last Feature in /I (which
ie other Features) are preserved in f, otherwise the last Feature in fI can have
multiple values of the other Features).

squence(fl) A length(fl) > |

e(flc) A length(flc) = length(fl) = 1 A
h(fl) =
at(fl, i-1), at(fl, i) A f=at(fle, length(flc))

tiew

emnel Layer are specified in terms of the foundational constructs defined in the

del clements from the Kernel Semantic Model Library (see 9.2). The most
clements are used is through specialization, in order to meet subtyping

jyntax. For example, CLasses are required to (directly or indirectly) subclassify

224 Kernel Modeling Language (KerML) v1.0 Beta 1 Kernel Modeling Language (KerML) v1.0 Beta 1 225 nodel, while Features typed by Classes must subset objects.
sify Performance from the Performances library model, while Steps
st subset The i for such ialization is specified
0 Beta 1 221

© 2024 Model Driven Solutions, Inc.

1 February 2024

== KerML Kernel Layer
I‘ Key Semantic Concepts

e Anything —all things in the universe of discourse
o Data Value —a thing without individual identity or existence in space or time

o Occurrence — a thing with individual identity, that exist over time, and (possibly) extend
across space
= Object —an occurrence that is a structural objects

= Performances — an occurrences that is a performance of behavior
o Link - Relationships between participant things
= Binary Link — a link between exactly two participants

= Link Object - a link that is also an object that exists over time (and possibly space)
o Binary Link Object —a link object between exactly two participants

7 © 2024 Model Driven Solutions, Inc. 1 February 2024

e&z
V

KerML Kernel

Semantic Concept Model (Notional)

A suboccurrence is an occurrence
that will be destroyed if its
featuring occurrence is destroyed.

A subobject is a suboccurrence of an object
that is also an object.

An owned performance is a suboccurrence
of an object that is a performance.

An enacted performance is a performance
that is caused or performed by an object.

A subperformance is a suboccurrence of a
performance that is also a performance.

End features have special
semantics for multiplicity.

|

classifier Anything; |
This is a simplified model of
classifier DataValue specializes Anything; an "ontology" of the basic
kinds of things.
classifier Occurrence specializes Anything { -
feature suboccurrences : Occurrence[0..*];

}

classifier Object specializes Occurrence {
feature subobjects : Object subsets suboccurrences;
feature ownedPerformances : Performance subsets suboccurrences;
feature enactedPerformance : Performance;

}

classifier Performance specializes Occurrence {
feature subperformances : Performance subsets suboccurrences;

}

classifier Link specializes Anything {
feature participant: Anything[0O..*] nonunique ordered;
}
classifier BinaryLink specializes Link {
feature redefines participant: Anything[2] nonunique ordered;
end feature source: Anything[0..*] nonunique subsets participant;
end feature target: Anything[0O..*] nonunique subsets participant;

}

classifier BinaryLinkObject specializes BinaryLink, Object;

© 2024 Model Driven Solutions, Inc.

1 February 2024

KerML Kernel
Applying Semantic Concepts

package KerML Core_ Example {
import Kernel Library::*;

classifier TorqueValue specializes DataValue; Classifiers in the user model

specialize concepts from the

classifier Person specializes Object; semantic model library, identify

classifier Engine specializes Object ({ what kind of thing they subclassify.
feature engineTorque: TorqueValue[l]; _

}

classifier Wheel specializes Object;

classifier DriveTrain specializes BinaryLinkObject {
end drivingEngine: Engine[0..1] redefines source;
end drivenWheel: Wheel[0..*] redefines target;

}

Redefinition allows otherwise
inherited features to instead
be further constrained in a

classifier Car specializes Object { specialized type

feature driver: Person[0..1];

feature engine: Engine[l] subsets suboccurrences;

feature wheels: Wheel[4] subsets suboccurrences;

feature drive: DriveTrain subsets suboccurrences {
end redefines drivingEngine references engine[l];
end redefines drivenWheel references wheels[2];

Features are types, too, and
inherit from their featured types
("typing as specialization").

) Referencing is a special kind of
) subsetting, useful for constraining
the links in a "connection".

9 © 2024 Model Driven Solutions, Inc. 1 February 2024

e$°2
V

KerML Kernel

Syntax for Semantic Concepts

A data type implies subclassification
of the base type DataValue.

A structure implies subclassification
of the base type Object.

package KerML _Kernel Example {

datatype TorqueValue;
struct Person;
struct Engine {
feature engineTorque: TorqueValue[l];

}
struct Wheel;

assoc struct DriveTrain {

Syntactic keywords act as "markers"
for implied specializations of base
types from the semantic library,
which can be added automatically by
tooling as necessary.

End features implicitly redefine
the source and target ends from

A li)inlary $§s?piatic:cq:trgcturi implies end drivingEngine: Engine[0..1]; BinaryLinkObject.
SUlidizeslileeliiol) CFiE e Syl end drivenWheel: Wheel[0..*];
BinaryLinkObject. }
struct Car {
A composite feature of a structure feature driver: Person[0..1];
implies subsetting of the subobject composite feature engine: Engine[l];
feature of its featuring type. composite feature wheels: Wheel[4];
composite connector drive: DriveTrain
from engine[l] to wheels[2];
}
} A connector is a feature that must
be typed by an association. The
from and to parts are shorthands
giving the referenced elements for
the connector ends. ’
10 © 2024 Model Driven Solutions, Inc. 1 February 2024

e&z
V

KerML Kernel
Semantic Library Models

standard library package Base {
abstract classifier Anything {
feature self: Anything[1]

subsets things chains things.that;

standard library package Links {

abstract assoc Link specializes Anything {
readonly feature participant: Anything[2..*] nonunique ordered;

}
abst
fq
} }
abst assoc
fe fed
}
rea
abst res
}
abst
- assoc
} end
end
}
}

11

standard library package Occurrences {

abstract class Occurrence specializes Anything disjoint from DataValue {
feature localClock Clock[1] default universalClock;

composite feature suboccurrences: Occurrence[0..*] subsets occurrences {
feature redefines localClock default (that as Occurrence).localClock;

}

feature withoutOccurrences: Occurrence[0..*]
unions successors, predecessors, outsideOfOccurrences
inverse of withoutOccurrences;

feature predecessors: Occurrence[0..*] subsets withoutOccurrences;
feature successors: Occurrence[0..*] subsets withoutOccurrences
inverse of predecessors {..}

© 2024 Model Driven Solutions, Inc.

1 February 2024

== Systems Modeling
I‘ (Some) Key Semantic Concepts

o Attribute Value — a value of attributive data on item
e [tem —an object that is part of, exists in, or flows through a system

o Part—an item that represents part or all of a system and may perform actions for or within
the system

e Port—an object that represents a connection point for a part

e Connection — a link object between any kind of things
O Binary Connection —a connection between exactly two things
O Interface — a connection between ports

= Binary Interface —an interface between two ports

e Action —a behavior that can be performed by a part

12 © 2024 Model Driven Solutions, Inc. 1 February 2024

Systems Modeling (in KerML)
Systems Semantic Concept Model (Notlonal)

Implicitly subclassifies |
DataValue.

‘\uz

datatype AttributeValue;
Implicitly subsets subobjects.

™

o
struct Item {
composite feature subitems: Item[O..*];

Implicitly subclassifies /// composite feature subparts: Part[0..*] subsets subitems;

Object. } This is a simplified
‘ ontology of basic systems
struct Part specializes Item { modeling concepts.
A step is a feature that is feature ownedPorts: Port[0..*]; .
typed by a behavior. ; composite step ownedActions: Action subsets ownedPerformances;

step performedActions: Action subsets enactedPerformances;

}

struct Port {
feature subports: Port[0..*];

Implicitly subclassifies)

Performance. behavior Action {
composite step subactions: Action subsets subperformances;

}
Implicitly subclassifies
BinaryLinkObject. assoc struct BinaryConnection {
/ end source;
end target; Implicitly redefines source and
} target from BinaryLinkObject.

4

assoc struct BinaryInterface specializes BinaryConnection {
end source : Port;
end target : Port;

1 February 2024

=

y Systems Modeling (in KerML)

Applying Systems Semantic Concepts

package KerML_Systems Example {
import Systems Library::*;

An out feature is one whose
value is produced "inside" its
featuring instance but used
"outside" it. (And the opposite for
an in feature.)

datatype TorqueValue specializes AttributeValue;
struct DrivePort specializes Port {
out feature torque: TorqueValue;

}

struct DrivenPort conjugates DrivePort;
struct Person specializes Item;

Conjugation is a relationship A struct Engine specializes Part {

between types in which in /,f” feature enginePort: DrivePort subsets ownedPorts;

features of the conjugated type }

become out features of the struct Wheel specializes Part {

conjugating type, and vice versa. feature wheelPort: DrivenPort subsets ownedPorts;
4 }

assoc struct DriveTrain specializes Interface {
end drivePort: DrivePort[0..1];
end drivenPort: DrivenPort[0..*];

Feature chains ("dot notation") }
allow navigation across of chain struct Car specializes Part {
of features in which the featured feature driver: Person[0..1]:
type of each feature is compatible composite feature engine: Engine[l];
with the featuring type of the next. , composite feature wheels: Wheel[4];
‘ ¢."nD0site connector drive: DriveTrain
from engine.enginePort[1l] to wheels.wheelPort[2];
}
}

14 © 2024 Model Driven Solutions, Inc. 1 February 2024

SysML
Syntax for Semantic Concepts

An attribute definition implies
subclassification of the base
type AttributeValue.

An item definition implies
subclassification of the base
type Item.

A part definition implies
subclassification of the base
type Part.

i

A port usage must be typed by a
port definition. A port usage
declared within a part definition
subsets ownedPorts.

//

An interface definition implies
subclassification of the base
type Interface.

An item usage must be typed by
an item definition. A referential
usage is one that is not composite.

15

package SysML Systems Example {

attribute def TorqueValue;

A port definition implies subclassification

item def Person; of the base type Port.

port def DrivePort g
out attribute torque: TorqueValue;

}

part def Engine { An attribute usage must be
port enginePort: DrivePort; typed by an attribute

} definition.

part def Wheel {

port wheelPort: ~DrivePort; o
) Every port definition includes

interface def DriveTrain { a nested declaration of its

end drivePort: DrivePort[0..1]; conjugate, With "~
end drivenPort: ~DrivePort[0O..*]; prepended to its name
}
part def Car { A part usage must be typed by
ref item driver: Person[0..1]; a part definition. A part usage
part engine: Engine[l]; declared within an item or part
part wheels: Wheel[4]; definition subsets subparts.
interface drive: DriveTrain
connect engine.enginePort[1l] to wheels.wheelPort[2];
}
' } An interface usage must be typed by an interface

definition, and it must connect port usages.

© 2024 Model Driven Solutions, Inc.

1 February 2024

=

y SysML

Systems Model Library

standard library package Attributes {

alias AttributeValue for DataValue;

standard library package Items {

abstract item def Item :> Object {

standard library package Parts {
abstract part def Part :> Item {

abstract port ownedPorts: Port[0..*] :> ports, timeEnclosedOccurrences;
abstract ref action performedActions: Action[@..*] :> actions, enactedPerformances;
abstract action ownedActions: Action[0..*] :> actions, ownedPerformances {

ref part :>> this : Part = that as Part;

standard library package Ports {
private import Objects::0Object;
private import Objects::objects;

1 abstract port def Port :> Object {
} ref self: Port :>> Object::self;
port subports: Port :> timeEnclosedOccurrences;
a1
) ®
abstract port ports : Port[@..*] nonunique :> objects; ® ®
}

16 © 2024 Model Driven Solutions, Inc. 1 February 2024

SysML
Vehicle Library Model Example

library package SysML Vehicle_Library {

A usage (feature) not nested

within another type is attribute def TorqueValue; . .
considered to implicitly have This is a simple ontology of
Anything as its featuring type. | item def Person; vehicle modeling concepts.

item persons : Person[0..*] nonunique;

port def DrivePort ({
An abstract usage is one for out attribute torque: TorqueValue;
which any instance must also }

be an instance of some interface def DriveTrain {

deClared_ subset. (An interface end drivePort: DrivePort[0..1];
usage without connected end drivenPort: ~DrivePort[0..*];
features must be abstract.) r }
y abstract interface driveTrains: DriveTrain[0..*];

part def Engine {
port enginePort: DrivePort;

}

An absiractdefinition isione abstract part engines: Engine[0..*] nonunique;

for which any instance must
also be an instance of some part def Wheel {

declared specialization. port wheelPort: ~DrivePort;
~ 4 }

abstract part wheels: Wheel[0..*] nonunique;

abstract part def Vehicle {

The subset of engines whose abstract part redefines engines;

featuring type is a kind of , abstract part redefines wheels;
Vehicle. (The redefinition also abstract part redefines driveTrains;
adds engines to the }

namespace for Vehicle.) }

17 © 2024 Model Driven Solutions, Inc. 1 February 2024

SysML
Applying Vehicle Model Concepts

package SysML Vehicle Example {
import SysML Vehicle Library::*;

This subsets the abstract part def Car specializes Vehicle {
Vehicle::engines, which is ref item driver: Person[0..1];
inherited from Vehicle.

part carEngine[l] subsets engines;
part carWheels[4] subsets wheels;

interface drive: DriveTrain subsets driveTrains
connect carEngine.enginePort[1]
to carWheels.wheelPort[2];

18 © 2024 Model Driven Solutions, Inc. 1 February 2024

=

y SysML

Vehicle Metadata

package SysML Vehicle Metadata {
import SysML Vehicle Library::*;

Metadata are user-definable, model-

level annotations of an element. private import Metaobjects::SemanticMetadata;
Semantic metadata is metadata used
to annotated a type in order to link it to metadata def person specializes SemanticMetadata {
a base type in a semantic library. redefines baseType = persons meta SysML::Usage;
/ subsets annotatedElement : SysML::Usage;
}

metadata def drive specializes SemanticMetadata {
redefines baseType = driveTrains meta SysML::Usage;

The base type of a semantic subsets annotatedElement : SysML::InterfaceUsage;
metadata annotation is bound }

to the "metacast” of a type from

the semantic library.) metadata def engine specializes SemanticMetadata {

redefines baseType = engines meta SysML::Usage;
subsets annotatedElement : SysML::PartUsage;

The allowed annotated element "}
for this metadata can be o)
restricted to a specific abstract metadata def wheel specializes SemanticMetadata {

redefines baseType = wheels meta SysML::Usage;
subsets annotatedElement : SysML::PartUsage;

}

syntax metaclass.

metadata def vehicle specializes SemanticMetadata {

redefines baseType = Vehicle meta SysML::Definition;
subsets annotatedElement : SysML::Definition;

19 © 2024 Model Driven Solutions, Inc. 1 February 2024

SysML

Vehicle DSML Example

20

A user defined keyword starting

with # is a shorthand for

annotating an element with the
named metadata. The metaclass

of the annotated element must be
consistent with what is allowed

for the metadata. /

package Vehicle_DSML_Example ({
import SysML Vehicle Metadata::*;

#vehicle def Car {
ref #person driver[0..1];

#engine part carEngine[l];
#wheel part carWheels[4];

#drive interface
connect carEngine.enginePort[1]
to carWheels.wheelPort[2];

Specializations are now
all implied based on the
metadata annotations.

-

© 2024 Model Driven Solutions, Inc.

1 February 2024

Specifications

e Adopted "Beta 1" Specifications
o0 KerML - https://www.omg.org/spec/KerML/

O SysML v2 — https://www.omg.org/spec/SysML/

e |atest FTF Revised Specifications
O https://github.com/Systems-Modeling/SysML-v2-Release/tree/master/doc

e Finalization Schedule
O March 2024 — "Beta 2" specifications available
O September 2024 —Finalized ("Beta 3") specifications available
o0 Mid 2025 - Formal specifications available

21 © 2024 Model Driven Solutions, Inc. 1 February 2024

https://www.omg.org/spec/KerML/
https://www.omg.org/spec/SysML/
https://github.com/Systems-Modeling/SysML-v2-Release/tree/master/doc

