

Model Driven Solutions

Where Business Meets Technology

A division of Data Access Technologies, Inc.

Model Driven Service Oriented Architecture

Ed Seidewitz

07 April 2010

Business Focused Solutions Using Model Driven Architecture

Business Model

- Example: Financial Management Enterprise Architecture
- Business Architectures
- Service Contracts
- Business Processes
- Information Models

Example: Financial Management Enterprise Architecture

- A simplified Financial Management Enterprise Architecture for a Federal Government agency (also largely applicable to commercial financial management)
- Consistent with the Federal Financial Management Line of Business architecture
- Based on work done for the General Services Administration (GSA) that delivered:
 - A target business architecture for consistent and comprehensive financial management supporting all GSA services and staff offices.
 - A logical system architecture for a cohesive financial management suite supporting the business architecture, particularly in areas in which a transition needed to be made off legacy systems.
 - A set of interface definitions to act as the basis for a standard GSA financial management service-oriented architecture.

Financial Management Enterprise Context

A Composite Service Contract

Financial Management Business Architecture

Copyright © 2008 Data Access Technologies, Inc. Model Driven Solutions 07 April 2010 Page 7

Receivables Accounting Business Architecture

Simple Bill Submission Service Contract

Receivables Management Activities

Copyright © 2008 Data Access Technologies, Inc. Model Driven Solutions 07 April 2010 Page 10

Establish Unfilled Customer Order Subactivities

 Complicated activities may be decomposed into subactivities.

Record Unfilled Customer Order Behavior

Information Model

Information Model: What Is It For?

Logical System Architecture

- Example: Core Financial Management System
- Component architectures
- Service Interfaces
- Functional Specifications
- Data Models

From Business Architecture to System Architecture

Three-Tier Component Architecture

Provided and Required Interfaces

Service Interfaces from Service Contracts

Copyright © 2008 Data Access Technologies, Inc. Model Driven Solutions

Receivables Accounting Component Architecture

Receivables Management Activities (from Business Model)

07 April 2010 Page 21

Receivables Management Component Architecture

Copyright © 2008 Data Access Technologies, Inc. Model Driven Solutions 07 April 2010 Page 22

Record Unfilled Customer Order Functional Specification

- 1. Receive CustomerOrderEstablishment
- 2. Let newOrder = CreateCustomerOrder(CustomerOrderEstablishment.newOrder).data
- **3. Send** GeneralLedgerTransaction to increase Unfilled Customer Orders and decrease Anticipated Reimbursements
- Send newOrder as RecurrentCustomerOrder (Note: EstablishRecurringReceivables will check if there are actually any creation triggers.)
- 5. Send CustomerOrderEstablished

Example Request Message Model

Copyright © 2008 Data Access Technologies, Inc. Model Driven Solutions 07 April 2010 Page 24

Example Persistence Model

Copyright © 2008 Data Access Technologies, Inc.

Model Driven Solutions

07 April 2010

Page 25

Technology Specification

- Example: Core Financial System Implementation
- Provisioning
- Web Services

From System Architecture to System Implementation

Example Implementation Architecture

The "top down" solution architecture must be informed by what exists and existing capabilities should be exposed and integrated based on a system of systems architecture

From Service Model to Web Service Implementation

07 April 2010 Page 29

Copyright © 2008 Data Access Technologies, Inc. Model Driven Solutions

Provisioning the Implementation

Model Driven Solutions

07 April 2010 Page 30

Example Web Services Generation

<<Participant Type>> (Bill Receiver Interface

+submit bill()

<<Participant Type>> (Bill Submitter Interface

+notify bill delivered()
+notify bill returned()

Example Request Message XML Document

```
<BillSubmission Message identity="...">
     <BillSubmission>
          <bi11>
               <Bill>
                    <billID> ... </billID>
                    <principleAmount> ... </principleAmount>
                    <payer>
                          <Party identity="...">
                    </payer>
                    <lineItems>
                          <LineItem Item>
                               <LineItem> ... </LineItem>
                          </LineItem Item>
                    </lineItems>
               </Bill>
          </bill>
          <billingAddress>
               <Address> ... </Address>
               <BillingAddress> ... </BillingAddress>
          <billingAddress>
     </BillSubmission>
</BillSubmission Message>
```

