
22 March 2011

Copyright © 2011 Data Access Technologies, Inc.
(Model Driven Solutions)

A division of Data Access Technologies, Inc.

Programming in UML:

An Introduction to fUML and Alf

Tutorial for the OMG Executable UML Information Day
Presented by Ed Seidewitz

Page 2
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Agenda

I. Introduction

II. Elements of Executable UML

III. Standard Model Library

Page 3
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

I. Introduction

A. A Motivating Example

B. Programming in UML

C. The Standards

Page 4
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

A. A Motivating Example

• E-Commerce Ordering System

– Loosely based on the Online Bookstore Domain Case Study given
in Appendix B of the book Executable UML: A Foundation for Model
Driven Architecture by Stephen J. Mellor and Marc J. Balcer
(Addison-Wesley, 2002)

• To be designed in UML

– Class models for structure

– State machine models for behavior

• To be implemented on the Web

– Using Java/JEE

– …or maybe C#/.Net

– …or maybe LAMP

– …or whatever…

Page 5
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Ordering: Class Model

Order is an active class

whose classifier behavior

is responsible for handling
ordering functionality.

Order is an active class

whose classifier behavior

is responsible for handling
ordering functionality.

Page 6
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Order: Classifier Behavior

A state machine abstracts
system behavior into a
finite number of states.

A state machine abstracts
system behavior into a
finite number of states.

The system is modeled as
having discrete transitions

between the states.

The system is modeled as
having discrete transitions

between the states.

A transition may trigger
further system behavior or
system behavior may be
dependent on the current
state.

A transition may trigger
further system behavior or
system behavior may be
dependent on the current
state.

Page 7
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Order Behavior: EstablishCustomer Activity

An activity specifies
behavior as the
coordinated
execution of a set of
subordinate actions.

An activity specifies
behavior as the
coordinated
execution of a set of
subordinate actions.

An action in one
activity may call

another activity.

An action in one
activity may call

another activity.

Data and control
flow between the
various actions.

Data and control
flow between the
various actions.

Other actions provide
various data and
computational functions.

Other actions provide
various data and
computational functions.

Full executability requires
complete specification of
behavior and computation. This
is often much more easy to
specify using a textual notation.

Full executability requires
complete specification of
behavior and computation. This
is often much more easy to
specify using a textual notation.

Page 8
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

The Question Is…

• If we are going to take the time to carefully design our system
using UML, e.g.,

– Structural models of classes and associations

– Behavioral models using state machines or operations and messages

• Then why can’t we use these directly to execute our system?

The answer is: We can!
• Just add detailed behavior…

– …which is best done using a textual action language…

– …which should be at the same semantic level as the rest of the model.

Page 9
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Executable UML: Perceived Issues

• Making models detailed enough for machine execution defeats
the purpose of models for human communication.

• UML is not specified precisely enough to be executed (at least
not in a standard way).

• Graphical modeling notations are not good for detailed
programming.

Page 10
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Executable UML: Issue Resolutions

• Making models detailed enough for machine execution defeats
the purpose of models for human communication.

– Executable models can still be more understandable than
executable code.

– Non-executable models are still useful, too.

• UML is not specified precisely enough to be executed (at least
not in a standard way).

– The Foundational UML (fUML) standard specifies precise
semantics for an executable subset of UML.

– fUML Version 1.0 formal specification now available.

• Graphical modeling notations are not good for detailed
programming.

– The Action Language for fUML (Alf) standard specifies a
textual action language with fUML semantics.

– Alf Version 1.0 finalization in progress.

Page 11
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

B. The Standards

• Unified Modeling Language (UML)

• Executable UML Foundation (fUML)

• UML Action Language (Alf)

Page 12
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Unified Modeling Language (UML)

The Unified Modeling Language (UML) is a graphical language for
modeling the structure, behavior and interactions of software,
hardware and business systems, standardized by the Object
Management Group (OMG).

• UML Version 1.1 (first standard) – November 1997

• UML Version 1.5 (with action semantics) – March 2003

• UML Version 2.0 – August 2005

• UML Version 2.3 (current standard) – May 2010

• UML Version 2.4 – January 2011 (beta)

• UML Version 2.5 (spec simplification) – August 2011 (planned)

Page 13
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

ffffffffExecutable UML Foundation (fUML)

Foundational UML (fUML) is an executable subset of standard
UML that can be used to define, in an operational style, the
structural and behavioral semantics of systems.

• OMG RFP for the Semantics of a Foundational Subset for
Executable UML Models – Issued April 2005

• fUML Version 1.0 Beta 3 (finalized) – February 2010

• fUML Version 1.0 (formal) – January 2011

Page 14
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

ffffffffKey Components

• Foundational UML Subset (fUML) – A computationally
complete subset of the abstract syntax of UML (Version 2.3)

– Kernel – Basic object-oriented capabilities

– Common Behavior – General behavior and asynchronous
communication

– Activities – Activity modeling, including structured activities (but
not including variables, exceptions, swimlanes, streaming or other
“higher level” activity modeling)

• Execution Model – A model of the execution semantics of user
models within the fUML subset

• Foundational Model Library

– Primitive Types – Boolean, String, Integer, Unlimited Natural

– Primitive Behaviors – Boolean, String and Arithmetic Functions

– Basic Input/Output – Based on the concept of “Channels”

Page 15
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

UML Action Language (Alf)

The Action Language for Foundational UML (Alf) is a textual
surface representation for UML modeling elements with the
primary purpose of acting as the surface notation for specifying
executable (fUML) behaviors within an overall graphical UML
model. (But which also provides an extended notation for
structural modeling within the fUML subset.)

• OMG RFP for Concrete Syntax for a UML Action Language –
Issued September 2008

• Alf Version 1.0 Beta 1 – October 2010

Page 16
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Key Components

• Concrete Syntax – A BNF specification of the legal textual syntax
of the Alf language.

• Abstract Syntax – A MOF metamodel of the abstract syntax tree
that is synthesized during parsing of an Alf text, with additional
derived attributes and constraints that specify the static semantic
analysis of that text.

• Semantics – The semantics of Alf are defined by mapping the Alf
abstract syntax metamodel to the fUML abstract syntax metamodel.

• Standard Model Library

– From the fUML Foundational Model Library

• Primitive Types (plus Natural and Bit String)

• Primitive Behaviors (plus Bit String Functions and Sequence Functions)

• Basic Input/Output

– Collection Functions – Similar to OCL collection operations for
sequences

– Collection Classes – Set, Ordered Set, Bag, List, Queue, Deque, Map

Page 17
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

II. Elements of Executable UML

A. Activities

B. Actions

C. Structure

D. Asynchronous Communication

Page 18
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

A. Activities

• Activities and Parameters

• Actions and Flows

• Textual Notation

• Tokens

• Offers

• Control Nodes

• Structured Nodes

Page 19
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Activities and Parameters

An activity is a specification of behavior as
the coordinated execution of subordinate
actions, using a control and data flow model.

An activity is a specification of behavior as
the coordinated execution of subordinate
actions, using a control and data flow model.

An activity may have input,
output and return parameters.

An activity may have input,
output and return parameters.

The parameters have corresponding activity

parameter node on the boundary of the
diagrammatic representation of an activity.

The parameters have corresponding activity

parameter node on the boundary of the
diagrammatic representation of an activity.

Page 20
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Actions and Flows

An action is a fundamental
unit of executable behavior
within an activity.

An action is a fundamental
unit of executable behavior
within an activity.

A pin is an activity node that
either accepts input to or
provides output from an action.

A pin is an activity node that
either accepts input to or
provides output from an action.

An object flow provides
a path for passing
objects or data.

An object flow provides
a path for passing
objects or data.

A control flow specifies
the sequencing of
actions.

A control flow specifies
the sequencing of
actions.

An activity diagram is a graph structure
consisting of activity nodes connected by
activity edges.

An activity diagram is a graph structure
consisting of activity nodes connected by
activity edges.

Page 21
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Textual Notation

activity DoSomething(in input: Integer, out output Integer): Integer {
output = A(input);
return B();

}

activity DoSomething(in input: Integer, out output Integer): Integer {
output = A(input);
return B();

}
Alf behavioral notation
maps to fUML activity
models.

Alf behavioral notation
maps to fUML activity
models.

The semantics of the Alf notation
is defined by its mapping to fUML

The semantics of the Alf notation
is defined by its mapping to fUML

Page 22
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Tokens

a = DoSomething(1, b);a = DoSomething(1, b);

A token is a container for an object, datum
or locus of control that may be present at an
activity node.

A token is a container for an object, datum
or locus of control that may be present at an
activity node.

The activity is invoked
with an argument of 1
for its input parameter.

The activity is invoked
with an argument of 1
for its input parameter.

An object token with a
value of 1 is placed on
the input activity
parameter node.

An object token with a
value of 1 is placed on
the input activity
parameter node.

The object token flows to
the input pin of action A
along the object flow.

The object token flows to
the input pin of action A
along the object flow.

Action A fires and
produces an object
token on its output pin.

Action A fires and
produces an object
token on its output pin.

The object token flows
to the output activity
parameter node along
the object flow.

The object token flows
to the output activity
parameter node along
the object flow.

When it is done, action A
produces a control token,

which flows to action B
along the control flow.

When it is done, action A
produces a control token,

which flows to action B
along the control flow.

Action B accepts the
control token and fires,
producing an object
token on its output pin.

Action B accepts the
control token and fires,
producing an object
token on its output pin.

The object token flows
to the output activity
parameter node along
the object flow.

The object token flows
to the output activity
parameter node along
the object flow.

Values on the output activity
parameter nodes are copied
to the output arguments.

Values on the output activity
parameter nodes are copied
to the output arguments.

Page 23
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Offers

An output pin offers its
tokens to the targets of
all outgoing object flows.

An output pin offers its
tokens to the targets of
all outgoing object flows.

A single token can only flow to one

target. If two competing targets are
both ready to accept an offer for the
same token, it is indeterminate

which will get the token.

A single token can only flow to one

target. If two competing targets are
both ready to accept an offer for the
same token, it is indeterminate

which will get the token.

Note: fUML semantics do not guarantee
“liveliness” or “fairness” in the execution of
actions competing for tokens.

Note: fUML semantics do not guarantee
“liveliness” or “fairness” in the execution of
actions competing for tokens.

Actions with no control constraints
execute concurrently. This means that
they may execute in parallel – or they
may execute sequentially in any order.

Actions with no control constraints
execute concurrently. This means that
they may execute in parallel – or they
may execute sequentially in any order.

Page 24
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Fork and Join Nodes

order = 'Create Order'();
//@parallel
{

'Fulfill Order'(order);
'Invoice Order'(order);

}
'Close Out Order'(order);

order = 'Create Order'();
//@parallel
{

'Fulfill Order'(order);
'Invoice Order'(order);

}
'Close Out Order'(order);

A fork node copies the
tokens it is offered,
and offers a copy on
each outgoing flow.

A fork node copies the
tokens it is offered,
and offers a copy on
each outgoing flow.

A join node waits for a token
to be offered on all incoming
flows and then offers tokens
on its outgoing flow.

A join node waits for a token
to be offered on all incoming
flows and then offers tokens
on its outgoing flow.

In the Alf textual notation,
forks and joins are implicit in
the parallel block notation.

In the Alf textual notation,
forks and joins are implicit in
the parallel block notation.

Note: Alf does not actually provide any
notation for competition for tokens on
output pins. A fork node is always inserted
for multiple flows out of any output pin.

Note: Alf does not actually provide any
notation for competition for tokens on
output pins. A fork node is always inserted
for multiple flows out of any output pin.

Page 25
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Control Nodes

An initial node

generates a single
control token.

An initial node

generates a single
control token.A merge node

passes on any
tokens it receives.

A merge node

passes on any
tokens it receives.

A decision node

routes tokens based
on a decision input

value.

A decision node

routes tokens based
on a decision input

value. An activity final

node terminates
the activity when it
receives a token.

An activity final

node terminates
the activity when it
receives a token.

A control node is an activity
node used to coordinate the
flow of (the offers for) tokens
between other nodes.

A control node is an activity
node used to coordinate the
flow of (the offers for) tokens
between other nodes.

Note: This construction
is necessary so a “card”
token is available for
each iteration.

Note: This construction
is necessary so a “card”
token is available for
each iteration.

Note: Since the decision
node “gates” control flow,
it must be provided with an
incoming control token.

Note: Since the decision
node “gates” control flow,
it must be provided with an
incoming control token.

Page 26
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Data Stores

fUML 1.1 will
allow the use of
data store nodes.

fUML 1.1 will
allow the use of
data store nodes.

Page 27
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Structured Nodes

card = 'Select Credit Card'();

do {
charge = 'Create Credit Card Charge'(card);

if ('Check Charge Approval'(charge)) {
'Notify Customer of Approval'(charge);
declined = false;

} else {
'Notify Customer of Denial'(charge);
declined = true;

}

} while (declined);

card = 'Select Credit Card'();

do {
charge = 'Create Credit Card Charge'(card);

if ('Check Charge Approval'(charge)) {
'Notify Customer of Approval'(charge);
declined = false;

} else {
'Notify Customer of Denial'(charge);
declined = true;

}

} while (declined);

A structured node is an activity
node used to group subordinate
nodes into a control structure.

A structured node is an activity
node used to group subordinate
nodes into a control structure.

An loop node iterates
the execution of its
body while a
condition is true.

An loop node iterates
the execution of its
body while a
condition is true.

By default, the
condition is tested
after execution of
the body.

By default, the
condition is tested
after execution of
the body.

A conditional node

executes one
clause or another
based on the result
of a test (or tests).

A conditional node

executes one
clause or another
based on the result
of a test (or tests).

Inputs to the loop node
initialize loop variables

available across all
iterations of the loop.

Inputs to the loop node
initialize loop variables

available across all
iterations of the loop.

Note: There is no normative UML
graphical notation for loop or
conditional nodes.

Note: There is no normative UML
graphical notation for loop or
conditional nodes.

break;

true

Alf also provides
a traditional
break statement.

Alf also provides
a traditional
break statement.

Page 28
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Expansion Regions

'Get Outstanding Orders'(customer) ->
select order ('Is Delinquent?'(order)) ->
iterate order ('Refer for Collection'(order));

'Get Outstanding Orders'(customer) ->
select order ('Is Delinquent?'(order)) ->
iterate order ('Refer for Collection'(order));

An expansion region is
used to apply subordinate
actions on all members of
an input collection

An expansion region is
used to apply subordinate
actions on all members of
an input collection

A parallel expansion
region applies nested
behavior concurrently

to all collection
elements.

A parallel expansion
region applies nested
behavior concurrently

to all collection
elements.

An iterative expansion
region applies nested
behavior sequentially

to all collection
elements.

An iterative expansion
region applies nested
behavior sequentially

to all collection
elements.

Alf provides specialized
notation that maps to typical
uses of expansion regions.

Alf provides specialized
notation that maps to typical
uses of expansion regions.

Page 29
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Reduction

A reduction action “inserts”
a binary function between
the elements of a
sequence of values.

A reduction action “inserts”
a binary function between
the elements of a
sequence of values.

this.totalAmount =
this.lineItems.amount->reduce MoneyFunctions::Add;

this.totalAmount =
this.lineItems.amount->reduce MoneyFunctions::Add;

This is shorthand for
“this.lineItems->collect item (item.amount)”.

This is shorthand for
“this.lineItems->collect item (item.amount)”.

Page 30
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

B. Actions

• Invocation Actions

• Object Actions

• Structural Feature Actions

• Link Actions

NOTE: Some of these actions will be discussed in more detail later.NOTE: Some of these actions will be discussed in more detail later.

Page 31
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Invocation Actions

• Call Behavior

– Calling an activity

– Calling a primitive behavior

• Call Operation

• Send Signal

• Accept Event

PlaceOrder(customer, product)

Max(throttle, limit) count + quantity

order.addProduct(product, quantity)

vehicle.EngageBrake(pressure)

accept (signal: EngageBrake)

Page 32
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Object Actions

• Value Specification

• Create Object

• Destroy Object

• Test Identity

• Read Self

• Read Extent

• Read Is Classified Object

• Reclassify Object

1 true "Hello"

new Order()

order.destroy()

order == myOrder name != customerName

this

Order.allInstances()

vehicle instanceof Car car hastype Hatchback

reclassify order from PendingOrder to ClosedOrder

Page 33
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Structural Feature Actions

• Read Structural Feature

• Add Structural Feature Value

• Remove Structural Feature Value

• Clear Structural Feature Value

order.customer

order.datePlaced = today

order.lineItems->add(item)

order.lineItems->addAt(1,item)

order.lineItems->remove(item)

order.lineItems->removeAt(1)

order.card = null

Page 34
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Link Actions

• Read Link

• Create Link

• Destroy Link

• Clear Association

Owns.person(house=>thisHouse) thisHouse.person

Owns.addLink(person=>jack, house=>newHouse)

Owns.removeLink(person=>jack, house=>oldHouse)

Owns.clearAssoc(jack)

Page 35
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Computation

• Indexing (from 1 , not 0)

• Increment/Decrement

• Arithmetic/Logic

• Comparison

• Conditional

• Isolation

order.lineItems[i] order.lineItems->at(i)

index++ ++count

total + value address & mask

total > threshold index <= count

count != 0 && total/count > limit

count < min || count > max

$this.sensor.getReading().value

Page 36
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

C. Structure

• Structural and Behavioral Models

• Classes

• Associations

Page 37
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Structural and Behavioral Models

• A structural model (e.g., a class model) specifies the relevant
(types of) instances in a domain that may exist at any one point
in time.

– Structural semantics define how a structural model constrains
allowable instances.

• A behavioral model (e.g., an activity model) specifies behavior
over time

– Behavioral semantics define how a behavioral model changes the
state of instances over time.

Page 38
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Classes

• Attributes

• Data Types

• Primitive Types

• Operations and Methods

• Structural Semantics

• Behavioral Semantics

A class is a classifier of objects that persist in the extent of
the class, with an identity that is independent of the value of
their attributes at any one time.

A class is a classifier of objects that persist in the extent of
the class, with an identity that is independent of the value of
their attributes at any one time.

Page 39
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Classes and Attributes

A class may have
attributes whose types
are primitive, data
types or other classes.

A class may have
attributes whose types
are primitive, data
types or other classes.

A referential attribute,

whose type is a class, is
conventionally notated as
an association with a class-

owned association end.

A referential attribute,

whose type is a class, is
conventionally notated as
an association with a class-

owned association end.

A bidirectional association
results in corresponding
referential attributes on
both associated classes.

A bidirectional association
results in corresponding
referential attributes on
both associated classes.

Page 40
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Data Types

A data type is a classifier of transient data

values whose identity is based on the values
of their attributes.

A data type is a classifier of transient data

values whose identity is based on the values
of their attributes.

Data types may
have attributes, but
not operations.

Data types may
have attributes, but
not operations.

Page 41
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Primitive Types

• From UML 2.3 Auxiliary Constructs

– Boolean

– Integer

– UnlimitedNatural

– String

• fUML 1.1 will:

– Use the new UML 2.4 PrimitiveTypes package

– Include support for the new Real type

Page 42
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Classes: Operations and Methods

An operation specifies a
behavior that may be
synchronously invoked
on an instance of a class.

An operation specifies a
behavior that may be
synchronously invoked
on an instance of a class.

A method defines
the actual behavior
that is invoked.

A method defines
the actual behavior
that is invoked.

Page 43
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Classes: Structural Semantics

Structural semantics specify how
a structural model constrains
allowable instances.

Structural semantics specify how
a structural model constrains
allowable instances.

Objects are instances
of classes with values
for each attribute.

Objects are instances
of classes with values
for each attribute.

Class-owned association
ends are structural features
with values, like attributes.

Class-owned association
ends are structural features
with values, like attributes.

fUML does not actually give
semantics to an association
with class-owned ends, only to
the ends as structural features.

fUML does not actually give
semantics to an association
with class-owned ends, only to
the ends as structural features.

Note: fUML does provide
“reified” semantics for
associations that own their own
ends, as will be discussed later.

Note: fUML does provide
“reified” semantics for
associations that own their own
ends, as will be discussed later.

Page 44
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Classes: Behavioral Semantics

• Creating an Order

• Adding a Line Item

• Canceling an Order

Behavioral semantics specify how a behavioral model
changes the state of instances over time.

Behavioral semantics specify how a behavioral model
changes the state of instances over time.

Page 45
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Creating an Order

order = new Order (customer, today)

Before After

@Create
public Order (in customer: Customer, in datePlaced: Date) {

this.datePlaced = datePlaced;
this.totalAmount = new Money(dollars=>0, cents=>0);
this.customer = customer;

this.customer.orders->add(this);
}

@Create
public Order (in customer: Customer, in datePlaced: Date) {

this.datePlaced = datePlaced;
this.totalAmount = new Money(dollars=>0, cents=>0);
this.customer = customer;

this.customer.orders->add(this);
}

A new object is created
and the constructor
operation is invoked.

A new object is created
and the constructor
operation is invoked.

The constructor initializes
the new order’s attribute
values…

The constructor initializes
the new order’s attribute
values…

…and adds the order
to the customer’s list.

…and adds the order
to the customer’s list.

Page 46
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Adding a Line Item

Before After
order.addProduct (product, 2)

public addProduct
(in product: Product, in quantity: Integer) {
lineItem = new LineItem(product, quantity);
this.lineItems->add(lineItem);
this.totalAmount = MoneyFunctions::Add

(this.totalAmount, lineItem.amount);
}

public addProduct
(in product: Product, in quantity: Integer) {
lineItem = new LineItem(product, quantity);
this.lineItems->add(lineItem);
this.totalAmount = MoneyFunctions::Add

(this.totalAmount, lineItem.amount);
}

The method for the
operation creates a
new line item object…

The method for the
operation creates a
new line item object…

The addProduct
operation is invoked
on an existing Order
object.

The addProduct
operation is invoked
on an existing Order
object.

…adds the new object
to the list of line items
for the order…

…adds the new object
to the list of line items
for the order…

…and updates
the total order
amount.

…and updates
the total order
amount.

Page 47
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Canceling an Order

Before After
order.cancel()

@Destroy
public cancel() {

this.customer.orders->remove(this);
}

@Destroy
public cancel() {

this.customer.orders->remove(this);
}

A destructor operation is
invoked, after which the
order object is destroyed.

A destructor operation is
invoked, after which the
order object is destroyed.

Because line items
are aggregated by
composition, they
are destroyed, too.

Because line items
are aggregated by
composition, they
are destroyed, too.

References to the
destroyed object must
be explicitly removed.

References to the
destroyed object must
be explicitly removed.

Page 48
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Associations

• Classes and Associations

• Structural Semantics

• Behavioral Semantics

An association is a classifier whose instances are links that
relate other instances.

An association is a classifier whose instances are links that
relate other instances.

Page 49
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Classes and Associations

An association (that owns its
ends) is a classifier of
persistent links between the
associated classes, which exist
in the extent of the association.

An association (that owns its
ends) is a classifier of
persistent links between the
associated classes, which exist
in the extent of the association.

Page 50
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Associations: Structural Semantics

Links are now semantic
instances of the indicated
associations.

Links are now semantic
instances of the indicated
associations.

Structural semantics specify how
a structural model constrains
allowable instance models.

Structural semantics specify how
a structural model constrains
allowable instance models.

Page 51
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Associations: Behavioral Semantics

• Creating an Order (revised)

• Canceling an Order (revised)

Behavioral semantics specify how a behavioral model
changes the state of instances over time.

Behavioral semantics specify how a behavioral model
changes the state of instances over time.

Page 52
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Creating an Order (revised)

order = new Order (customer, today)

Before After

@Create
public Order (in customer: Customer, in datePlaced: Date) {

this.datePlaced = datePlaced;
this.totalAmount = new Money(dollars=>0, cents=>0);

Customer_Order.addLink(customer, this);
}

@Create
public Order (in customer: Customer, in datePlaced: Date) {

this.datePlaced = datePlaced;
this.totalAmount = new Money(dollars=>0, cents=>0);

Customer_Order.addLink(customer, this);
}

A single action creates
a bidirectional link.

A single action creates
a bidirectional link.

Page 53
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Canceling an Order (revised)

Before After
order.cancel()

@Destroy
public cancel() { }

@Destroy
public cancel() { }

A destructor operation is
invoked, after which the
order object is destroyed.

A destructor operation is
invoked, after which the
order object is destroyed.

Links in which the
destroyed object
participates are now also
automatically destroyed.

Links in which the
destroyed object
participates are now also
automatically destroyed.

Page 54
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

D. Asynchronous Communication

• Signals and Receptions

• Classifier Behaviors

• Asynchronous Behavior

Page 55
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Signals and Receptions
A signal is a classifier
whose instances may
be communicated
asynchronously.

A signal is a classifier
whose instances may
be communicated
asynchronously.

A reception is a
declaration of the ability
to receive a signal.

A reception is a
declaration of the ability
to receive a signal.

A signal may have
attributes that represent
transmittable data.

A signal may have
attributes that represent
transmittable data.

More than one
class can receive
the same signal.

More than one
class can receive
the same signal.

Page 56
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Classifier Behaviors

An active class is one that
has a classifier behavior.

Only active class may
receive signals.

An active class is one that
has a classifier behavior.

Only active class may
receive signals.

A classifier behavior is an
autonomous behavior
started when an active
class is instantiated.

A classifier behavior is an
autonomous behavior
started when an active
class is instantiated.

Page 57
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Asynchronous Behavior

accept (submission: SubmitCharge);
card = submission.card;

do {
new CreditCardCharge(card, this);

accept (response: ChargeApproved) {
this.customer.ChargeApproved(response.charge);
break;

} or accept (response: ChargeDeclined) {
this.customer.ChargeDeclined(response.charge);

}

while (true);

accept (submission: SubmitCharge);
card = submission.card;

do {
new CreditCardCharge(card, this);

accept (response: ChargeApproved) {
this.customer.ChargeApproved(response.charge);
break;

} or accept (response: ChargeDeclined) {
this.customer.ChargeDeclined(response.charge);

}

while (true);

The order object
accepts a signal to
submit a charge.

The order object
accepts a signal to
submit a charge.

The order object creates
a new credit card charge
object, which begins its
asynchronous behavior.

The order object creates
a new credit card charge
object, which begins its
asynchronous behavior.

Note: UML semantics require a separate action
to start the behavior of a new object. However,
Alf notation for creating an active class maps to
both create and start object behavior actions.

Note: UML semantics require a separate action
to start the behavior of a new object. However,
Alf notation for creating an active class maps to
both create and start object behavior actions.

The order object
accepts a signal from
the charge object that
the charge is approved.

The order object
accepts a signal from
the charge object that
the charge is approved.The order object

sends a signal to the
customer that the
charge is approved.

The order object
sends a signal to the
customer that the
charge is approved.

Page 58
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

III. Standard Model Library

• Primitive Behaviors

• Collection Functions

• Collection Classes

• Basic Input/Output

Page 59
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Primitive Behaviors

• Integer Functions – Arithmetic, Comparison, Conversion

• Unlimited Natural Functions – Comparison, Conversion

• Boolean Functions – Logical Operations, Conversion

• Bit String Functions – Bit-wise operations, Conversion

• String Functions – Concatenation, Size, Substring

• Coming in fUML 1.1: Real Functions

Page 60
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Collection Functions

Collection functions operate on sequences of values of any type.

• Testing and accessing functions

– Examples: seq->isEmpty(), seq1->equals(seq2), seq->at(n)

• Non-mutating funtions

– Examples: seq2 = seq->including(x), seq3 = seq1->union(seq2)

• Mutating “in place” functions

– Examples: seq->add(x), seq1->addAll(seq2), seq2->remove(x)

Page 61
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Collection Classes

Collection classes define objects that represent collections of
values of a given type.

Page 62
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Basic Input Output: Channels

Page 63
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Basic Input Output: Reading and Writing Lines

activity ReadLine
(out errorStatus: Status[0..1]): String {

return StandardIntputChannel.allInstances().readLine(status);

}

activity ReadLine
(out errorStatus: Status[0..1]): String {

return StandardIntputChannel.allInstances().readLine(status);

}

activity WriteLine
(in value: String, out errorStatus: Status[0..1]) {

StandardOutputChannel.allInstances().writeLine(result, status);

}

activity WriteLine
(in value: String, out errorStatus: Status[0..1]) {

StandardOutputChannel.allInstances().writeLine(result, status);

}

Page 64
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

Hello World

activity Hello() {

WriteLine("Hello World!");

}

activity Hello() {

WriteLine("Hello World!");

}

Page 65
Copyright © 2011 Data Access Technologies, Inc.

(Model Driven Solutions)

22 March 2011

References

• Foundational UML (fUML)

– Semantics of a Foundational Subset for Executable UML Models
standard, http://www.omg.org/spec/FUML/Current

– fUML Open Source (Reference) Implementation Project,
http://www.modeldriven.org/fuml

• Action Language for fUML (Alf)

– Action Language for Foundational UML (Alf) standard,
http://www.omg.org/spec/ALF/Current

– Alf Open Source (Reference) Implementation Repository,
http://lib.modeldriven.org/MDLibrary/trunk/Applications/Alf-
Reference-Implementation

• /dist – Full parser for the current version of the specification

• Full implementation in progress

• Contact

– Email: ed-s@modeldriven.com

– Twitter: @seidewitz or http://twitter.com/seidewitz

