
On a Unified View of Modeling and Programming
Position Paper

Ed Seidewitz

nMeta LLC
14000 Gulliver’s Trail
Bowie MD 20720 USA

ed-s@modeldriven.com
ed@nmeta.us

Abstract.
In the software community, modeling and programming are generally consid-
ered to be different things. However, some software models specify behavior
precisely enough that they can be executed in their own right. And all programs
can be considered models, at least of the executions that they specify. So per-
haps modeling and programming are not actually so different after all. Indeed,
there is a modeling/programming convergence going on right now in the Uni-
fied Modeling Language (UML) community, with a recent series of specifica-
tions on precise execution semantics for a growing subset of UML. But the lan-
guage design legacy of UML is largely grounded in the old view that sharply
separates models and programs, complicating the new convergence. It is per-
haps now time to move forward to a new generation of unified model-
ing/programming languages.

Keywords. Programming languages. Modeling languages. UML. fUML. Alf.
Action language. Modeling tools.

I think it is safe to say that most software developers consider models to be something
quite different from programs. However, let’s consider what a “model” really is.

A model is always about something, which I term the system under study (SUS).
For our purposes here, we can consider a model to consist of a set of statements about
the SUS expressed in some modeling language. These statements make assertions
about certain properties of the SUS, but say nothing about other properties that are not
mentioned.

A model thus abstracts from the SUS it models by the selection of statements it
makes. The model is useful to the extent that the properties not considered by the
model are simply not important for the purpose of the model or can be chosen or de-
termined independently of the model. (For further discussion of this view of modeling
for software, and it’s relation to how modeling is done in other fields, see [6].)

A modeling language can be textual, graphical or a combination of the two. De-
pending on the expressivity of the language, it may be possible to make statements

about an SUS that range from very precise to quite loose. A precise model simply
makes more detailed assertions that place tighter, less ambiguous constraints on the
SUS.

Consider the simple class model shown in Fig. 1, in which the Unified Modeling
Language (UML) [2] is used as the modeling language. What does this model mean?
That depends on how you interpret it.

Fig. 1. UML Class Model of an Address Book

One interpretation is that this is a problem domain model of address books. Under
this interpretation, the model states that an address book can have zero or more en-
tries; that each entry must include one name and at least one address; that addresses
can be added to, removed from and looked up in an address book; and so forth.

But now suppose that I add behavioral models for the operations specified in the
classes in Fig. 1. For example, Fig. 2 shows a UML activity model for the behavior of
the AddressBook lookup operation. What is this a model of? Effectively, it is a model
of the computation to be carried out in order to perform the lookup operation.

Indeed, this activity is within the so-called Foundational UML (fUML) subset of
UML, for which there are precisely-defined, standard execution semantics [5]. If be-
havioral models are provided for all the operations shown in Fig. 1, then the result is a
completely executable UML model, with standard semantics.

Now, the diagram in Fig. 2 may seem to be a somewhat awkward way to specify
behavior at this level of detail. However, there is also a standard Action Language for
Foundational UML (Alf) [1], which provides a fully textual notation for writing such
activity models. For instance, the activity drawn in Fig. 2 can be written as follows in
Alf:

namespace AddressBook;
activity lookup(in name: String): String[0..*] {
 return this.entries->
 select e (e.name == name).addresses;
}

This now looks a lot like code. However, the meaning of this textual notation is, in
fact, defined by mapping it to executable UML models. The Alf text given above
essentially maps to the UML activity model shown in Fig. 2, and execution of the Alf
text has exactly the semantics of executing the corresponding UML activity. Thus,
Alf is not a separate programming language, but, rather, a textual notation for writing
UML models.

Fig. 2. UML Activity Model for the AddressBook lookup operation

Further, Alf also includes textual notation for structural UML modeling elements.
For example, the AddressBook class can be notated in Alf as follows:

class AddressBook {

 public entries: compose Entry[0..*];

 @Create public AddressBook();
 public add(in name: String, in address: String);
 public remove(in name: String, in index: Integer);
 public lookup(in name: String): String[0..*];

}

So, it is clear that a modeling language does not have to be graphical, and that
models can be executable. So how is this different than programming?

In fact, while they are not generally viewed in this way, programming languages
are essentially all textual modeling languages. Programs written in these languages

are precise models of execution (where, for simplicity, I consider both data and algo-
rithmic aspects to be included in the term “execution”). Modern programming lan-
guages, in fact, allow a programmer to abstract away a great deal of the details that
need to be handled to actually execute a program – from language processing, to the
operating system, right down to the bare hardware. Indeed, the progression of pro-
gramming languages from machine language, to assembly language to “higher order”
languages can be seen exactly as a progression in increasing the abstraction possible
for modeling execution in a program.

From this point of view all programs are actually models. And all executable mod-
els are actually programs. But there are, of course, software models that are not pro-
grams. Such models allow us to reason about software in ways other than through
direct execution and testing.

For example, Fig. 3 shows a UML object model for an instance of the AddresBook
class that has a single entry. This object model can be deduced to be correct, based on
the class model in Fig. 1. Thus, the class model for the Entry class requires that an
entry object have a name an at least one address, and the object model in Fig. 3 satis-
fies these constraints. One could still draw an object model in which the entry object
had no addresses, but this model would be invalid relative to the class model given in
Fig. 1.

Fig. 3. UML Object Model for an AddressBook

Thus, UML object models can be given precise semantics that are not necessarily
execution semantics. There can also be requirements models, architecture models and
business models with precise semantics that may or may not be execution semantics.
But a major advantage of considering execution in the context of a wider modeling
language is that it allows deductive or inductive reasoning on models to be combined
with execution and testing, within a single, consistent semantic framework. On the
other hand, the semantics of most programming languages are entirely execution se-
mantics, other than, perhaps, “static semantic” checks that may be provided by the
language compiler (such as type checking).

To maximize the effectiveness of a combined modeling/programming language,
one would like a language that takes the best experience with the design of both tradi-
tional modeling and programming languages. I would suggest that the following char-
acteristics are particularly important for such a language.

• It should be designed to express both problem and solution domain models, not just
as an abstraction of hardware computing paradigms.

• It should have a formal semantics that allows reasoning about models, but also
provide a (consistent) execution semantics for models (or segments of models) in
which execution behavior is fully specified.

• It should provide a textual notation for representing and reasoning on all types of
models, but should also provide graphical notations where those are most appropri-
ate, allowing multiple views of the same model.

With the adoption of the fUML and Alf specifications, as well as a growing set of
additional “precise semantics” built on that foundation [3,4], such a convergence of
programming and modeling language design is actually already taking place for
UML. However, UML was not originally designed with executability in mind and it
has become a very complicated language (especially since version 2.0). Furthre, even
in the latest base UML standard [2], the specification of semantics is informal and
largely imprecise. This makes it considerably more difficult to create separate precise
semantics specification for UML, while maintaining general compatibility with the
language as it has existed for many years. And it limits how far the community can
practically go in achieving the goals I listed above.

It is, perhaps, time we moved on to something better – both for modeling and for
programming.

References

1. Object Management Group. 2013. Action Language for Foundational UML (Alf): Concrete
Syntax for a UML Action Language, Version 1.0.1. October 2013.
http://www.omg.org/spec/ALF/1.0.1/

2. Object Management Group. 2015. OMG Unified Modeling Language™ (OMG UML), Ver-
sion 2.5. http://www.omg.org/spec/UML/2.5/

3. Object Management Group. 2015. Precise Semantics of UML Composite Structures (PSCS),
Version 1.0. http://www.omg.org/spec/PSCS/1.0/

4. Object Management Group. 2015. Precise Semantics of UML State Machines, Request for
Proposals. http://doc.omg.org/ad/2015-3-2

5. Object Management Group. 2016. Semantics of a Foundational Subset for Executable UML
Models (fUML), v1.2.1. January 2916. http://www.omg.org/spec/FUML/1.2.1/

6. Seidewitz, E. 2003. What Models Mean. IEEE Software. September/October 2003, 26-32.

